App2Check @ ATE_ABSITA 2020: Aspect Term Extraction and Aspect-based Sentiment Analysis (short paper)

E. Rosa, A. Durante
{"title":"App2Check @ ATE_ABSITA 2020: Aspect Term Extraction and Aspect-based Sentiment Analysis (short paper)","authors":"E. Rosa, A. Durante","doi":"10.4000/BOOKS.AACCADEMIA.6892","DOIUrl":null,"url":null,"abstract":"In this paper we describe and present the results of the system we specifically developed and submitted for our participation to the ATE ABSITA 2020 evaluation campaign on the Aspect Term Extraction (ATE), Aspect-based Sentiment Analysis (ABSA), and Sentiment Analysis (SA) tasks. The official results show that App2Check ranks first in all of the three tasks, reaching a F1 score which is 0.14236 higher than the second best system in the ATE task and 0.11943 higher in the ABSA task; it shows a Root-MeanSquare Error (RMSE) that is 0.13075 lower than the second classified in the SA","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we describe and present the results of the system we specifically developed and submitted for our participation to the ATE ABSITA 2020 evaluation campaign on the Aspect Term Extraction (ATE), Aspect-based Sentiment Analysis (ABSA), and Sentiment Analysis (SA) tasks. The official results show that App2Check ranks first in all of the three tasks, reaching a F1 score which is 0.14236 higher than the second best system in the ATE task and 0.11943 higher in the ABSA task; it shows a Root-MeanSquare Error (RMSE) that is 0.13075 lower than the second classified in the SA
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
App2Check @ ATE_ABSITA 2020:面向术语提取和基于面向的情感分析(短论文)
在本文中,我们描述并展示了我们专门开发并提交给ATE ABSITA 2020评估活动的系统的结果,该活动涉及方面术语提取(ATE)、基于方面的情感分析(ABSA)和情感分析(SA)任务。官方结果显示,App2Check在三个任务中都排名第一,在ATE任务中比第二名高0.14236分,在ABSA任务中比第二名高0.11943分;它显示的均方根误差(RMSE)比SA中分类的第二个误差低0.13075
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1