Deep Reinforcement Learning for Energy-Efficient Task Offloading in Cooperative Vehicular Edge Networks

Paul Agbaje, E. Nwafor, Habeeb Olufowobi
{"title":"Deep Reinforcement Learning for Energy-Efficient Task Offloading in Cooperative Vehicular Edge Networks","authors":"Paul Agbaje, E. Nwafor, Habeeb Olufowobi","doi":"10.1109/INDIN51400.2023.10218113","DOIUrl":null,"url":null,"abstract":"In the Internet of Vehicle ecosystem, multi-access edge computing (MEC) enables mobile nodes to improve their communication and computation capabilities by executing transactions in near real-time. However, the limited energy and computation capabilities of MEC servers limit the efficiency of task computation. Moreover, the use of static edge servers in dense vehicular networks may lead to an influx of service requests that negatively impact the quality of service (QoS) of the edge network. To enhance the QoS and optimize network resources, minimizing offloading computation costs in terms of reduced latency and energy consumption is crucial. In this paper, we propose a cooperative offloading scheme for vehicular nodes, using vehicles as mobile edge servers, which minimizes energy consumption and network delay. In addition, an optimization problem is presented, which is formulated as a Markov Decision Process (MDP). The solution proposed is a deep reinforcement-based Twin Delayed Deep Deterministic policy gradient (TD3), ensuring an optimal balance between task computation time delay and the energy consumption of the system.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10218113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the Internet of Vehicle ecosystem, multi-access edge computing (MEC) enables mobile nodes to improve their communication and computation capabilities by executing transactions in near real-time. However, the limited energy and computation capabilities of MEC servers limit the efficiency of task computation. Moreover, the use of static edge servers in dense vehicular networks may lead to an influx of service requests that negatively impact the quality of service (QoS) of the edge network. To enhance the QoS and optimize network resources, minimizing offloading computation costs in terms of reduced latency and energy consumption is crucial. In this paper, we propose a cooperative offloading scheme for vehicular nodes, using vehicles as mobile edge servers, which minimizes energy consumption and network delay. In addition, an optimization problem is presented, which is formulated as a Markov Decision Process (MDP). The solution proposed is a deep reinforcement-based Twin Delayed Deep Deterministic policy gradient (TD3), ensuring an optimal balance between task computation time delay and the energy consumption of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的协同车辆边缘网络节能任务卸载
在车联网生态系统中,多接入边缘计算(MEC)使移动节点能够通过近乎实时地执行事务来提高其通信和计算能力。然而,MEC服务器有限的能量和计算能力限制了任务计算的效率。此外,在密集的车辆网络中使用静态边缘服务器可能会导致大量服务请求的涌入,从而对边缘网络的服务质量(QoS)产生负面影响。为了增强QoS和优化网络资源,在降低延迟和能耗方面最小化卸载计算成本至关重要。在本文中,我们提出了一种车辆节点的协作卸载方案,将车辆作为移动边缘服务器,以最大限度地降低能耗和网络延迟。此外,还提出了一个优化问题,将其表述为马尔可夫决策过程(MDP)。提出了一种基于深度强化的双延迟深度确定性策略梯度(TD3)的解决方案,保证了任务计算时延和系统能耗之间的最佳平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Debt Management in Industrial ML - State of Practice and Management Model Proposal Measuring the Robustness of ML Models Against Data Quality Issues in Industrial Time Series Data 5G packet delay considerations for different 5G-TSN communication scenarios Non-Interventional Precise TC Assessment for Enhancing Consumer Energy Flexibility Model-based Automation of TSN Configuration for Industrial Distributed Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1