Machine Learning Approach for Cloud NoSQL Databases Performance Modeling

V. A. E. Farias, F. R. C. Sousa, J. G. R. Maia, J. Gomes, Javam C. Machado
{"title":"Machine Learning Approach for Cloud NoSQL Databases Performance Modeling","authors":"V. A. E. Farias, F. R. C. Sousa, J. G. R. Maia, J. Gomes, Javam C. Machado","doi":"10.1109/CCGrid.2016.83","DOIUrl":null,"url":null,"abstract":"Cloud computing is a successful, emerging paradigm that supports on-demand services with pay-as-you-go model. With the exponential growth of data, NoSQL databases have been used to manage data in the cloud. In these newly emerging settings, mechanisms to guarantee Quality of Service heavily relies on performance predictability, i.e., the ability to estimate the impact of concurrent query execution on the performance of individual queries in a continuously evolving workload. This paper presents a performance modeling approach for NoSQL databases in terms of performance metrics which is capable of capturing the non-linear effects caused by concurrency and distribution aspects. Experimental results confirm that our performance modeling can accurately predict mean response time measurements under a wide range of workload configurations.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Cloud computing is a successful, emerging paradigm that supports on-demand services with pay-as-you-go model. With the exponential growth of data, NoSQL databases have been used to manage data in the cloud. In these newly emerging settings, mechanisms to guarantee Quality of Service heavily relies on performance predictability, i.e., the ability to estimate the impact of concurrent query execution on the performance of individual queries in a continuously evolving workload. This paper presents a performance modeling approach for NoSQL databases in terms of performance metrics which is capable of capturing the non-linear effects caused by concurrency and distribution aspects. Experimental results confirm that our performance modeling can accurately predict mean response time measurements under a wide range of workload configurations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云NoSQL数据库性能建模的机器学习方法
云计算是一种成功的新兴范例,它支持按需付费的即用型服务。随着数据的指数级增长,NoSQL数据库已被用于管理云中的数据。在这些新出现的设置中,保证服务质量的机制严重依赖于性能可预测性,即在不断变化的工作负载中估计并发查询执行对单个查询性能的影响的能力。本文从性能指标的角度提出了一种NoSQL数据库的性能建模方法,该方法能够捕捉并发和分布方面引起的非线性影响。实验结果证实,我们的性能建模可以准确地预测各种工作负载配置下的平均响应时间测量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1