Parallel Exact Inference on Multicore Using MapReduce

N. Ma, Yinglong Xia, V. Prasanna
{"title":"Parallel Exact Inference on Multicore Using MapReduce","authors":"N. Ma, Yinglong Xia, V. Prasanna","doi":"10.1109/SBAC-PAD.2012.43","DOIUrl":null,"url":null,"abstract":"Inference is a key problem in exploring probabilistic graphical models for machine learning algorithms. Recently, many parallel techniques have been developed to accelerate inference. However, these techniques are not widely used due to their implementation complexity. MapReduce provides an appealing programming model that has been increasingly used to develop parallel solutions. MapReduce though has been mainly used for data parallel applications. In this paper, we investigate the use of MapReduce for exact inference in Bayesian networks. MapReduce based algorithms are proposed for evidence propagation in junction trees. We evaluate our methods on general-purpose multi-core machines using Phoenix as the underlying MapReduce runtime. The experimental results show that our methods achieve 20x speedup on an Intel West mere-EX based system.","PeriodicalId":232444,"journal":{"name":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Inference is a key problem in exploring probabilistic graphical models for machine learning algorithms. Recently, many parallel techniques have been developed to accelerate inference. However, these techniques are not widely used due to their implementation complexity. MapReduce provides an appealing programming model that has been increasingly used to develop parallel solutions. MapReduce though has been mainly used for data parallel applications. In this paper, we investigate the use of MapReduce for exact inference in Bayesian networks. MapReduce based algorithms are proposed for evidence propagation in junction trees. We evaluate our methods on general-purpose multi-core machines using Phoenix as the underlying MapReduce runtime. The experimental results show that our methods achieve 20x speedup on an Intel West mere-EX based system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MapReduce的多核并行精确推理
推理是探索机器学习算法的概率图模型的关键问题。近年来,人们开发了许多并行技术来加速推理。然而,由于实现的复杂性,这些技术并没有被广泛使用。MapReduce提供了一种吸引人的编程模型,越来越多地用于开发并行解决方案。MapReduce主要用于数据并行应用。在本文中,我们研究了在贝叶斯网络中使用MapReduce进行精确推理。提出了基于MapReduce的连接树证据传播算法。我们使用Phoenix作为底层MapReduce运行时,在通用多核机器上评估我们的方法。实验结果表明,我们的方法在基于Intel West - ex的系统上实现了20倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Heterogeneous Networks to Improve Energy Efficiency in Direct Coherence Protocols for Many-Core CMPs Cloud Workload Analysis with SWAT Energy-Performance Tradeoffs in Software Transactional Memory CSHARP: Coherence and SHaring Aware Cache Replacement Policies for Parallel Applications Exploiting Concurrent GPU Operations for Efficient Work Stealing on Multi-GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1