Varun Bhogal, Z. Prodanoff, S. Ahuja, Kenneth Martin
{"title":"On BFSA Collision Resolution in LF, HF, and UHF RFID Networks","authors":"Varun Bhogal, Z. Prodanoff, S. Ahuja, Kenneth Martin","doi":"10.4018/IJWNBT.2015040104","DOIUrl":null,"url":null,"abstract":"RFID radio frequency identification technology has gained popularity in a number of applications. Decreased cost of hardware components along with wide adoption of international RFID standards have led to the rise of this technology. One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. RFID tags operating in the low frequency spectrum are widely used because they are the least expensive, but have a small implementation range. This paper presents an analysis of RFID performance across low frequency LF, high frequency HF, and ultra-high frequency UHF environments. The authors' evaluation is theoretical, using a passive-tag BFSA based simulation model that assumes 10 to 1,500 tags per reader and is created with OPNET Modeler 17. Ceteris paribus, the authors' results indicate that total census delay is lowest for UHF tags, while network throughput performance of LF tags is highest for large scale implementations of hundreds of tags in reader's range. A statistical analysis has been conducted on the findings for the three different sets.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wirel. Networks Broadband Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJWNBT.2015040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
RFID radio frequency identification technology has gained popularity in a number of applications. Decreased cost of hardware components along with wide adoption of international RFID standards have led to the rise of this technology. One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. RFID tags operating in the low frequency spectrum are widely used because they are the least expensive, but have a small implementation range. This paper presents an analysis of RFID performance across low frequency LF, high frequency HF, and ultra-high frequency UHF environments. The authors' evaluation is theoretical, using a passive-tag BFSA based simulation model that assumes 10 to 1,500 tags per reader and is created with OPNET Modeler 17. Ceteris paribus, the authors' results indicate that total census delay is lowest for UHF tags, while network throughput performance of LF tags is highest for large scale implementations of hundreds of tags in reader's range. A statistical analysis has been conducted on the findings for the three different sets.