A 1S Direct-Battery-Attach Integrated Buck Voltage Regulator with 5-Stack Thin-Gate 22nm FinFET CMOS Featuring Active Voltage Balancing and Cascaded Self-Turn-ON Drivers
Suhwan Kim, H. Krishnamurthy, S. Amin, Sheldon Weng, Jin Feng, H. Do, K. Radhakrishnan, K. Ravichandran, J. Tschanz, V. De
{"title":"A 1S Direct-Battery-Attach Integrated Buck Voltage Regulator with 5-Stack Thin-Gate 22nm FinFET CMOS Featuring Active Voltage Balancing and Cascaded Self-Turn-ON Drivers","authors":"Suhwan Kim, H. Krishnamurthy, S. Amin, Sheldon Weng, Jin Feng, H. Do, K. Radhakrishnan, K. Ravichandran, J. Tschanz, V. De","doi":"10.23919/VLSICircuits52068.2021.9492516","DOIUrl":null,"url":null,"abstract":"A 1S direct-battery-attach buck converter with a 5-stack, thin-gate-FinFET power train delivers a peak efficiency of 89.2% for a 3.8V in to 1.8V out, with 10x higher power density (~15A/mm2), switching at up to 10x higher frequency (40MHz) using 4x-10x lower inductance (10-100nH) than state of the art. Cascaded self-timed drivers and soft-switching low-side drivers minimize complexity in driving 10 individual power switches safely.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A 1S direct-battery-attach buck converter with a 5-stack, thin-gate-FinFET power train delivers a peak efficiency of 89.2% for a 3.8V in to 1.8V out, with 10x higher power density (~15A/mm2), switching at up to 10x higher frequency (40MHz) using 4x-10x lower inductance (10-100nH) than state of the art. Cascaded self-timed drivers and soft-switching low-side drivers minimize complexity in driving 10 individual power switches safely.