Finite-length Analysis of D2D Coded Caching via Exploiting Asymmetry in Delivery

Xiang Zhang, Mingyue Ji
{"title":"Finite-length Analysis of D2D Coded Caching via Exploiting Asymmetry in Delivery","authors":"Xiang Zhang, Mingyue Ji","doi":"10.1109/spawc51304.2022.9834012","DOIUrl":null,"url":null,"abstract":"We present a novel Packet Type (PT)-based design framework for the finite-length analysis of Device-to-Device (D2D) coded caching. By the exploitation of the asymmetry in the coded delivery phase, two fundamental forms of subpacketization reduction gain for D2D coded caching, i.e., the subfile saving gain and the further splitting saving gain, are identified in the PT framework. The proposed framework features a streamlined design process which uses several key concepts including user grouping, subfile and packet types, multicast group types, transmitter selection, local/global further splitting factor, and PT design as an integer optimization. In particular, based on a predefined user grouping, the subfile and multicast group types can be determined and the cache placement of the users can be correspondingly determined. In this stage, subfiles of certain types can be potentially excluded without being used in the designed caching scheme, which we refer to as subfile saving gain. In the delivery phase, by a careful selection of the transmitters within each type of multicast groups, a smaller number of packets that each subfile needs to be further split into can be achieved, leading to the further splitting saving gain. The joint effect of these two gains results in an overall subpacketization reduction compared to the Ji-Caire-Molisch (JCM) scheme [1]. Using the PT framework, a new class of D2D caching schemes is constructed with order reduction on subpacketization but the same rate when compared to the JCM scheme.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel Packet Type (PT)-based design framework for the finite-length analysis of Device-to-Device (D2D) coded caching. By the exploitation of the asymmetry in the coded delivery phase, two fundamental forms of subpacketization reduction gain for D2D coded caching, i.e., the subfile saving gain and the further splitting saving gain, are identified in the PT framework. The proposed framework features a streamlined design process which uses several key concepts including user grouping, subfile and packet types, multicast group types, transmitter selection, local/global further splitting factor, and PT design as an integer optimization. In particular, based on a predefined user grouping, the subfile and multicast group types can be determined and the cache placement of the users can be correspondingly determined. In this stage, subfiles of certain types can be potentially excluded without being used in the designed caching scheme, which we refer to as subfile saving gain. In the delivery phase, by a careful selection of the transmitters within each type of multicast groups, a smaller number of packets that each subfile needs to be further split into can be achieved, leading to the further splitting saving gain. The joint effect of these two gains results in an overall subpacketization reduction compared to the Ji-Caire-Molisch (JCM) scheme [1]. Using the PT framework, a new class of D2D caching schemes is constructed with order reduction on subpacketization but the same rate when compared to the JCM scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传输不对称性的D2D编码缓存的有限长度分析
我们提出了一种新的基于包类型(PT)的设计框架,用于设备到设备(D2D)编码缓存的有限长度分析。通过利用编码传输阶段的不对称性,在PT框架中确定了D2D编码缓存的两种基本形式的子分组减少增益,即子文件保存增益和进一步分割保存增益。该框架采用了几个关键概念,包括用户分组、子文件和数据包类型、多播组类型、发射机选择、本地/全局进一步分割因子和PT设计作为整数优化,从而简化了设计过程。特别是,基于预定义的用户分组,可以确定子文件和多播组类型,并相应地确定用户的缓存位置。在这个阶段,可以排除某些类型的子文件,而不需要在设计的缓存方案中使用,我们将其称为子文件保存增益。在传输阶段,通过仔细选择每种类型的多播组中的发送器,可以实现每个子文件需要进一步分割的数据包数量较少,从而获得进一步分割的节省收益。与JCM (ji - cire - molisch)方案相比,这两种增益的共同作用导致总体亚包化减少[1]。使用PT框架,构建了一类新的D2D缓存方案,该方案在子分组上减少了顺序,但与JCM方案相比具有相同的速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1