On the Security and Performance of Proof of Work Blockchains

Arthur Gervais, Ghassan O. Karame, K. Wüst, Vasileios Glykantzis, H. Ritzdorf, Srdjan Capkun
{"title":"On the Security and Performance of Proof of Work Blockchains","authors":"Arthur Gervais, Ghassan O. Karame, K. Wüst, Vasileios Glykantzis, H. Ritzdorf, Srdjan Capkun","doi":"10.1145/2976749.2978341","DOIUrl":null,"url":null,"abstract":"Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital cryptocurrencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature. This opens the question whether existing security analysis of Bitcoin's PoW applies to other implementations which have been instantiated with different consensus and/or network parameters. In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1268","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1268

Abstract

Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital cryptocurrencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature. This opens the question whether existing security analysis of Bitcoin's PoW applies to other implementations which have been instantiated with different consensus and/or network parameters. In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于工作证明区块链的安全性和性能
工作量证明(PoW)驱动的区块链目前占现有数字加密货币总市值的90%以上。尽管对比特币的安全条款进行了深入的分析,但变体(分叉)PoW区块链(用不同参数实例化)的安全保证在文献中并未受到太多关注。这就提出了一个问题,即对比特币PoW的现有安全分析是否适用于使用不同共识和/或网络参数实例化的其他实现。在本文中,我们引入了一个新的定量框架来分析PoW区块链的各种共识和网络参数对安全性和性能的影响。基于我们的框架,我们为双重支出和自私挖掘设计了最佳对抗策略,同时考虑到现实世界的约束,如网络传播、不同块大小、块生成间隔、信息传播机制以及eclipse攻击的影响。因此,我们的框架允许我们捕获现有的基于PoW的部署以及使用不同参数实例化的PoW区块链变体,并客观地比较它们的性能和安全规定之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
∑oφoς: Forward Secure Searchable Encryption Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Message-Recovery Attacks on Feistel-Based Format Preserving Encryption iLock: Immediate and Automatic Locking of Mobile Devices against Data Theft Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1