Reinforcement Learning for Speech Recognition using Recurrent Neural Networks

Imad Burhan Kadhim, Mahdi Fadil Khaleel, Zuhair Shakor Mahmood, Ali Nasret Najdet Coran
{"title":"Reinforcement Learning for Speech Recognition using Recurrent Neural Networks","authors":"Imad Burhan Kadhim, Mahdi Fadil Khaleel, Zuhair Shakor Mahmood, Ali Nasret Najdet Coran","doi":"10.1109/ASIANCON55314.2022.9908930","DOIUrl":null,"url":null,"abstract":"This work describes a voice recognition system that does not need an intermediate phonetic representation to convert audio input to text. The system is based on a mix of the the Connectionist Temporal Classification goal function and deep bidirectional LSTM recurrent neural network architecture . A new method is proposed in which the network is taught to reduce the likelihood of an arbitrary transcription loss function being encountered. without the aid of any lexicons or models, this allows for a direct optimization of WER. The system has a WER (word error rate) of 22 percent, 20 percent with simply a lexicon of authorized terms, 9 percent using a trigram language model. The error rate drops to 7 percent when the network is used in conjunction with a baseline system.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9908930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work describes a voice recognition system that does not need an intermediate phonetic representation to convert audio input to text. The system is based on a mix of the the Connectionist Temporal Classification goal function and deep bidirectional LSTM recurrent neural network architecture . A new method is proposed in which the network is taught to reduce the likelihood of an arbitrary transcription loss function being encountered. without the aid of any lexicons or models, this allows for a direct optimization of WER. The system has a WER (word error rate) of 22 percent, 20 percent with simply a lexicon of authorized terms, 9 percent using a trigram language model. The error rate drops to 7 percent when the network is used in conjunction with a baseline system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的语音识别强化学习
这项工作描述了一个语音识别系统,它不需要中间语音表示来将音频输入转换为文本。该系统是基于连接主义时间分类目标函数和深度双向LSTM递归神经网络结构的混合。提出了一种新的方法,其中网络被教导以减少遇到任意转录损失函数的可能性。在没有任何词典或模型的帮助下,这允许对WER进行直接优化。该系统的单词错误率为22%,仅使用授权术语词典的错误率为20%,使用三元组语言模型的错误率为9%。当网络与基线系统结合使用时,错误率下降到7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Multi-Sensor DCNN & Multivariate Time Series Classification Based technique for Earthquake early warning Cross Technology Communication between LTE-U and Wi-Fi to Improve Overall QoS of 5G System Prediction of Ayurvedic Herbs for Specific Diseases by Classification Techniques in Machine Learning Face Mask Detection Using Machine Learning Techniques Closed-form BER Expressions of QPSK Modulation over NOMA-PNC Parallel Relay Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1