{"title":"Characterization of Additively Manufactured Beta Materials","authors":"Efrem Dawit Dana, S. Kumpaty, Jordan Weston","doi":"10.1115/imece2022-88301","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing (AM) is transforming industrial production. AM can produce parts with complex geometries and functionality. However, one of the biggest challenges in the AM world is limited material options. The purpose of this research is to develop new material mixtures and determine their mechanical properties for use at the MSOE Rapid Prototyping Center and provide valuable insight into beta materials for use in AM industry. Elastomeric polyurethane (EPU 40) and Rigid polyurethane (RPU 70), resins developed by Carbon3D, are employed for this research. Initially, EPU 40 (100%) and RPU 70 (100%) were used to print tensile and hardness test specimens so that their mechanical properties could be compared to the standard values presented by Carbon3D and used as benchmarks for newly developed material. Mixtures of the two materials, EPU 40 and RPU 70, in multiple ratios were then created and used to print tensile and hardness test specimens. Data collected from tensile and hardness tests show that EPU 40 and RPU 70 can be combined in various ratios to obtain material properties that lie between the two individual components. In addition to developing these new materials, the effect of printing orientation on mechanical properties was also studied in this paper.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-88301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) is transforming industrial production. AM can produce parts with complex geometries and functionality. However, one of the biggest challenges in the AM world is limited material options. The purpose of this research is to develop new material mixtures and determine their mechanical properties for use at the MSOE Rapid Prototyping Center and provide valuable insight into beta materials for use in AM industry. Elastomeric polyurethane (EPU 40) and Rigid polyurethane (RPU 70), resins developed by Carbon3D, are employed for this research. Initially, EPU 40 (100%) and RPU 70 (100%) were used to print tensile and hardness test specimens so that their mechanical properties could be compared to the standard values presented by Carbon3D and used as benchmarks for newly developed material. Mixtures of the two materials, EPU 40 and RPU 70, in multiple ratios were then created and used to print tensile and hardness test specimens. Data collected from tensile and hardness tests show that EPU 40 and RPU 70 can be combined in various ratios to obtain material properties that lie between the two individual components. In addition to developing these new materials, the effect of printing orientation on mechanical properties was also studied in this paper.