{"title":"Radar Resource Management for Multi-Target Tracking Using Model Predictive Control","authors":"Thies de Boer, M. Schöpe, H. Driessen","doi":"10.23919/fusion49465.2021.9626897","DOIUrl":null,"url":null,"abstract":"The radar resource management problem in a multi-target tracking scenario is considered. Partially observable Markov decision processes (POMDPs) are used to describe each tracking task. Model predictive control is applied to solve the POMDPs in a non-myopic way. As a result, the computational complexity compared to stochastic optimization methods such as policy rollout is dramatically reduced while the resource allocation results maintain similar. This is shown through simulations of dynamic multi-target tracking scenarios in which the cost and computational complexity of different approaches are compared.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The radar resource management problem in a multi-target tracking scenario is considered. Partially observable Markov decision processes (POMDPs) are used to describe each tracking task. Model predictive control is applied to solve the POMDPs in a non-myopic way. As a result, the computational complexity compared to stochastic optimization methods such as policy rollout is dramatically reduced while the resource allocation results maintain similar. This is shown through simulations of dynamic multi-target tracking scenarios in which the cost and computational complexity of different approaches are compared.