Short-circuit current interruption in liquid nitrogen environment

K. Golde, V. Hinrichsen, D. Gentsch, A. Lawall, E. Taylor
{"title":"Short-circuit current interruption in liquid nitrogen environment","authors":"K. Golde, V. Hinrichsen, D. Gentsch, A. Lawall, E. Taylor","doi":"10.1109/DEIV.2016.7763970","DOIUrl":null,"url":null,"abstract":"In combination with high temperature superconductive (HTS) equipment (e.g. current limiters) or in HTS subnets, which constitute a possible option for increasing the overall efficiency of electrical power distribution systems, only vacuum interrupters can be used directly in the liquid nitrogen environment. This would, however, be desirable for economic reasons. Circuit breakers and switches, respectively, are necessary to configure the network, and they should preferably be installed in the cold environment in order to avoid unnecessary transitions between the cold and the warm environment. In this investigation two commercially available vacuum interrupter (VI) types from two different manufacturers were investigated at ambient temperature and in liquid nitrogen. The breaking current was increased until an insulation of the transient recovery voltage (TRV) was not possible anymore. All tests were performed on two different types of vacuum interrupters, but installed in the same switchgear. The short circuit performance did not show any significant change in the liquid nitrogen environment. This paper also offers an outline of future tests needed to validate the use of VIs at low temperatures.","PeriodicalId":296641,"journal":{"name":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2016.7763970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In combination with high temperature superconductive (HTS) equipment (e.g. current limiters) or in HTS subnets, which constitute a possible option for increasing the overall efficiency of electrical power distribution systems, only vacuum interrupters can be used directly in the liquid nitrogen environment. This would, however, be desirable for economic reasons. Circuit breakers and switches, respectively, are necessary to configure the network, and they should preferably be installed in the cold environment in order to avoid unnecessary transitions between the cold and the warm environment. In this investigation two commercially available vacuum interrupter (VI) types from two different manufacturers were investigated at ambient temperature and in liquid nitrogen. The breaking current was increased until an insulation of the transient recovery voltage (TRV) was not possible anymore. All tests were performed on two different types of vacuum interrupters, but installed in the same switchgear. The short circuit performance did not show any significant change in the liquid nitrogen environment. This paper also offers an outline of future tests needed to validate the use of VIs at low temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液氮环境下短路电流中断
与高温超导(HTS)设备(例如限流器)或高温超导子网相结合,构成了提高配电系统整体效率的可能选择,只有真空断流器可以直接用于液氮环境。然而,出于经济原因,这是可取的。断路器和开关分别是配置网络所必需的,最好安装在寒冷环境中,以避免冷暖环境之间不必要的过渡。在本研究中,在环境温度和液氮条件下研究了来自两个不同制造商的两种市售真空断流器(VI)。分断电流不断增加,直到暂态恢复电压(TRV)的绝缘不再可能。所有测试都是在两种不同类型的真空断路器上进行的,但安装在同一开关设备中。在液氮环境下,短路性能没有明显变化。本文还概述了验证VIs在低温下使用所需的未来测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of the CERN SPS electrostatic septa ion traps Experimental investigation on the dynamic of cathode spot of vacuum arc in external transverse magnetic field Simulation of the hydrogen isotope desorption in the cathode spot of a vacuum arc with a ZrDx cathode Surface discharge detection of external insulation of outdoor vacuum circuit breaker based on ultraviolet imaging Model of the formation of an elementary crater on the cucr cathode of a vacuum interrupters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1