Reducing local concentrated gap loss of a nanocrystalline core by applying alloy gap

Xuan Guo, L. Ran, P. Tavner
{"title":"Reducing local concentrated gap loss of a nanocrystalline core by applying alloy gap","authors":"Xuan Guo, L. Ran, P. Tavner","doi":"10.1109/ECCE44975.2020.9236123","DOIUrl":null,"url":null,"abstract":"An alloy gap is used in the place of air gap to mitigate the concentrated gap loss of nanocrystalline core of an LCL filter inductor in a high frequency converter. A finite element analysis (FEA) model has been developed to examine the performance of the proposed method and validated by experiments. Based on FEA results, the maximum eddy current loss density can be reduced by around 89% and 69% for two different winding placements, respectively. The total eddy current loss of the air-gapped inductor can be reduced by 29% and 27% with gap winding placement and side winding placement respectively by applying an alloy gap. As a result, the hotspot temperature can be reduced corresponding to a lower and more uniform loss distribution.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9236123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An alloy gap is used in the place of air gap to mitigate the concentrated gap loss of nanocrystalline core of an LCL filter inductor in a high frequency converter. A finite element analysis (FEA) model has been developed to examine the performance of the proposed method and validated by experiments. Based on FEA results, the maximum eddy current loss density can be reduced by around 89% and 69% for two different winding placements, respectively. The total eddy current loss of the air-gapped inductor can be reduced by 29% and 27% with gap winding placement and side winding placement respectively by applying an alloy gap. As a result, the hotspot temperature can be reduced corresponding to a lower and more uniform loss distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用合金间隙减小纳米晶铁芯局部集中间隙损耗
采用合金隙代替气隙来减轻高频变换器中LCL滤波器电感纳米晶铁芯的集中隙损耗。建立了有限元分析模型来检验该方法的性能,并通过实验进行了验证。根据有限元分析结果,最大可以减少涡流损耗密度约89%和69%两种不同的绕组位置,分别。在气隙电感中加入合金隙,可使气隙电感的总涡流损耗分别降低29%和27%。因此,热点温度可以降低,相应的损耗分布更低,更均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of a High Saliency Transverse Flux Machine with a Novel Rotor Structure for Traction Applications Design and Evaluation of a Power Hardware-in-the-Loop Machine Emulator Statistics-based Switching Loss Characterization of Power Semiconductor Device Electromagnetic Interference Spectrum Steering Technique using Switching Angles Modulation in GaN DC-DC Converters Winding Embedded Liquid Cooling for High Power Density Slotless Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1