M. A. Bender, Seth Gilbert, F. Kuhn, John Kuszmaul, M. Médard
{"title":"Contention Resolution for Coded Radio Networks","authors":"M. A. Bender, Seth Gilbert, F. Kuhn, John Kuszmaul, M. Médard","doi":"10.1145/3490148.3538573","DOIUrl":null,"url":null,"abstract":"Randomized backoff protocols, such as exponential backoff, are a powerful tool for managing access to a shared resource, often a wireless communication channel (e.g., [1]). For a wireless device to transmit successfully, it uses a backoff protocol to ensure exclusive access to the channel. Modern radios, however, do not need exclusive access to the channel to communicate; in particular, they have the ability to receive useful information even when more than one device transmits at the same time. These capabilities have now been exploited for many years by systems that rely on interference cancellation, physical layer network coding and analog network coding to improve efficiency. For example, Zigzag decoding [56] demonstrated how a base station can decode messages sent by multiple devices simultaneously. In this paper, we address the following question: Can we design a backoff protocol that is better than exponential backoff when exclusive channel access is not required. We define the Coded Radio Network Model, which generalizes traditional radio network models (e.g., [30]). We then introduce the Decodable Backoff Algorithm, a randomized backoff protocol that achieves an optimal throughput of 1 - o (1). (Throughput 1 is optimal, as simultaneous reception does not increase the channel capacity.) The algorithm breaks the constant throughput lower bound for traditional radio networks [47-49], showing the power of these new hardware capabilities.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Randomized backoff protocols, such as exponential backoff, are a powerful tool for managing access to a shared resource, often a wireless communication channel (e.g., [1]). For a wireless device to transmit successfully, it uses a backoff protocol to ensure exclusive access to the channel. Modern radios, however, do not need exclusive access to the channel to communicate; in particular, they have the ability to receive useful information even when more than one device transmits at the same time. These capabilities have now been exploited for many years by systems that rely on interference cancellation, physical layer network coding and analog network coding to improve efficiency. For example, Zigzag decoding [56] demonstrated how a base station can decode messages sent by multiple devices simultaneously. In this paper, we address the following question: Can we design a backoff protocol that is better than exponential backoff when exclusive channel access is not required. We define the Coded Radio Network Model, which generalizes traditional radio network models (e.g., [30]). We then introduce the Decodable Backoff Algorithm, a randomized backoff protocol that achieves an optimal throughput of 1 - o (1). (Throughput 1 is optimal, as simultaneous reception does not increase the channel capacity.) The algorithm breaks the constant throughput lower bound for traditional radio networks [47-49], showing the power of these new hardware capabilities.