Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing

Hiep-Vu Van, Insoo Koo
{"title":"Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing","authors":"Hiep-Vu Van, Insoo Koo","doi":"10.6109/jicce.2015.13.4.221","DOIUrl":null,"url":null,"abstract":"Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2015.13.4.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用叠加协同频谱感知实现认知无线电吞吐量最大化的最佳感知时间
频谱感知在认知无线电网络中起着至关重要的作用,它使机会访问未充分利用的许可频谱成为可能。在传统的协同频谱感知(CSS)中,网络中的所有认知用户(cu)在频谱感知上花费相同的时间,而当其他用户向融合中心报告其感知结果时,则浪费时间保持沉默。采用叠加协同频谱感知(SPCSS)方案,将单个CU的感知时间延长到其他CU的上报时间,从而解决了这一问题。随后,SPCSS为cu分配不同的感知时间,从而影响系统的感知性能和吞吐量。在本文中,我们提出了一种算法来确定SPCSS的每个CU的最佳感知时间,以最大限度地提高系统吞吐量。仿真结果表明,与传统的CSS相比,该方案能显著提高认知无线网络的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling Smart Home System Using Internet of Things Odoo Data Mining Module Using Market Basket Analysis Seafarers Walking on an Unstable Platform: Comparisons of Time and Frequency Domain Analyses for Gait Event Detection Navigator Lookout Activity Classification Using Wearable Accelerometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1