Forecasting CO2 Emission from Thermal Power Production in Beijing-Tianjin-Hebei by Using GM (1,1) Model

Deng Pan
{"title":"Forecasting CO2 Emission from Thermal Power Production in Beijing-Tianjin-Hebei by Using GM (1,1) Model","authors":"Deng Pan","doi":"10.1145/3523286.3524593","DOIUrl":null,"url":null,"abstract":"China aims to reach the carbon peak by 2030 and carbon neutrality by 2060. However, China's economy over relies on thermal power industry, which make this goal difficult to achieve. Beijing-Tianjin-Hebei region is one of China's most important economic bases and is the main carbon dioxide (CO2) emitter in China. Therefore, CO2 emission of thermal power production in Beijing-Tianjin-Hebei region is predicted in this paper. GM (1,1) model is adopted to forecast CO2 emission due to the obvious advantage of dealing with small sample. The mean relative error and the posterior error test indicate that GM (1,1) prediction performance is satisfactory. The prediction results indicate that CO2 emission of thermal power production in Beijing-Tianjin-Hebei region will continuedly and steadily increase in next five years. This prediction results can provide local government with policy guidance on low-carbon development.","PeriodicalId":268165,"journal":{"name":"2022 2nd International Conference on Bioinformatics and Intelligent Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523286.3524593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

China aims to reach the carbon peak by 2030 and carbon neutrality by 2060. However, China's economy over relies on thermal power industry, which make this goal difficult to achieve. Beijing-Tianjin-Hebei region is one of China's most important economic bases and is the main carbon dioxide (CO2) emitter in China. Therefore, CO2 emission of thermal power production in Beijing-Tianjin-Hebei region is predicted in this paper. GM (1,1) model is adopted to forecast CO2 emission due to the obvious advantage of dealing with small sample. The mean relative error and the posterior error test indicate that GM (1,1) prediction performance is satisfactory. The prediction results indicate that CO2 emission of thermal power production in Beijing-Tianjin-Hebei region will continuedly and steadily increase in next five years. This prediction results can provide local government with policy guidance on low-carbon development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GM(1,1)模型的京津冀地区火力发电CO2排放预测
中国的目标是到2030年达到碳排放峰值,到2060年达到碳中和。然而,中国经济对火电产业的过度依赖使得这一目标难以实现。京津冀地区是中国最重要的经济基地之一,也是中国主要的二氧化碳排放区。为此,本文对京津冀地区火电生产的CO2排放量进行了预测。由于GM(1,1)模型处理小样本的优势明显,因此采用GM(1,1)模型对CO2排放量进行预测。均值相对误差和后验误差检验表明,GM(1,1)的预测效果令人满意。预测结果表明,未来5年京津冀地区火电生产CO2排放量将持续稳定增长。该预测结果可为地方政府低碳发展提供政策指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on intelligent energy-saving design strategy of building thermal comfort experience in western Sichuan based on Climate Consultant software——Take the unlimited bookstore of Santai Middle School in Mianyang city as an example Fusion of DET and Time-Frequency Analysis for Obstructive Sleep Apnea Screening Research on 10-year Beast Cancer Survival Prediction Model Based on Mixed Feature Selection Respiration and heartbeat signal separation algorithm using UWB radar platform Optimization of Big Data Mining Algorithm Based on Spark Framework: Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1