Fine-Grained Categorization by Deep Part-Collaboration Convolution Net

Qiyu Liao, H. Holewa, Min Xu, Dadong Wang
{"title":"Fine-Grained Categorization by Deep Part-Collaboration Convolution Net","authors":"Qiyu Liao, H. Holewa, Min Xu, Dadong Wang","doi":"10.1109/DICTA.2018.8615855","DOIUrl":null,"url":null,"abstract":"In part-based categorization context, the ability to learn representative feature from quantitative tiny object parts is of similar importance as to exactly localize the parts. We propose a new deep net structure for fine-grained categorization that follows the taxonomy workflow, which makes it interpretable and understandable for humans. By training customized sub-nets on each manually annotated parts, we increased the state-of-the-art part-based classification accuracy for general fine-grained CUB-200-2011 dataset by 2.1%. Our study shows the proposed method can produce more activation to discriminate detail part difference while maintaining high computing performance by applying a set of strategies to optimize the deep net structure.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In part-based categorization context, the ability to learn representative feature from quantitative tiny object parts is of similar importance as to exactly localize the parts. We propose a new deep net structure for fine-grained categorization that follows the taxonomy workflow, which makes it interpretable and understandable for humans. By training customized sub-nets on each manually annotated parts, we increased the state-of-the-art part-based classification accuracy for general fine-grained CUB-200-2011 dataset by 2.1%. Our study shows the proposed method can produce more activation to discriminate detail part difference while maintaining high computing performance by applying a set of strategies to optimize the deep net structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度局部协作卷积网络的细粒度分类
在基于零件的分类环境中,从定量的微小物体零件中学习代表性特征的能力与精确定位零件的能力同样重要。我们提出了一种新的深度网络结构,用于细粒度分类,它遵循分类法工作流程,使其对人类来说是可解释和可理解的。通过在每个手工标注的部件上训练定制的子网,我们将基于最先进部件的分类准确率提高了2.1%。我们的研究表明,该方法可以产生更多的激活来区分细节部分差异,同时通过一组策略来优化深度网络结构,保持较高的计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1