Handwritten country name identification using vector quantisation and hidden Markov model

G. Leedham, W. Tan, Weng Lee Yap
{"title":"Handwritten country name identification using vector quantisation and hidden Markov model","authors":"G. Leedham, W. Tan, Weng Lee Yap","doi":"10.1109/ICDAR.2001.953877","DOIUrl":null,"url":null,"abstract":"This paper is a study of keyword recognition using vector quantisation and a hidden Markov model. The purpose is to be able to identify a word holistically. This study considers the problem of identifying a handwritten country name from the 189 different country names registered with the Universal Postal Union. The method divides the words in the last line of the address image into 16/spl times/16 pixel blocks which are fed into a vector quantiser. The VQ outputs are classified using a HMM. Some presorting is carried out based on the letter-length of the word. The results on a set of 415 handwritten country names show the method is 85.3% correct with the majority of errors in estimating the letter-length of the word and distorted VQ output due to sloping and slanted words/letters.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is a study of keyword recognition using vector quantisation and a hidden Markov model. The purpose is to be able to identify a word holistically. This study considers the problem of identifying a handwritten country name from the 189 different country names registered with the Universal Postal Union. The method divides the words in the last line of the address image into 16/spl times/16 pixel blocks which are fed into a vector quantiser. The VQ outputs are classified using a HMM. Some presorting is carried out based on the letter-length of the word. The results on a set of 415 handwritten country names show the method is 85.3% correct with the majority of errors in estimating the letter-length of the word and distorted VQ output due to sloping and slanted words/letters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用矢量量化和隐马尔可夫模型的手写国家名称识别
本文研究了基于向量量化和隐马尔可夫模型的关键词识别方法。目的是为了能够从整体上识别一个单词。本研究考虑了在万国邮政联盟注册的189个不同国家名称中识别手写国家名称的问题。该方法将地址图像最后一行的单词分成16/spl倍/16个像素块,这些像素块被送入矢量量化器。VQ输出使用HMM进行分类。根据单词的字母长度进行一些排序。在一组415个手写国家名称上的结果表明,该方法的正确率为85.3%,其中大多数错误是在估计单词的字母长度和由于倾斜和倾斜的单词/字母而扭曲的VQ输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1