Using domain specific generated rules for automatic ontology population

C. Faria, R. Girardi, P. Novais
{"title":"Using domain specific generated rules for automatic ontology population","authors":"C. Faria, R. Girardi, P. Novais","doi":"10.1109/ISDA.2012.6416554","DOIUrl":null,"url":null,"abstract":"This article proposes a process for automatic population of ontologies from text that applies natural language processing and information extraction techniques to acquire and classify ontology instances. The work is part of HERMES, an FCT/CAPES research project looking for techniques and tools for automating the process of ontology learning and population. Two experiments using a legal and a tourism corpora were conducted in order to evaluate it. The results indicate that our approach can extract and classify instances with high effectiveness with the additional advantage of domain independence.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article proposes a process for automatic population of ontologies from text that applies natural language processing and information extraction techniques to acquire and classify ontology instances. The work is part of HERMES, an FCT/CAPES research project looking for techniques and tools for automating the process of ontology learning and population. Two experiments using a legal and a tourism corpora were conducted in order to evaluate it. The results indicate that our approach can extract and classify instances with high effectiveness with the additional advantage of domain independence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用特定领域生成的规则自动填充本体
本文提出了一种应用自然语言处理和信息提取技术对本体实例进行获取和分类的文本本体自动填充过程。这项工作是HERMES的一部分,HERMES是一个FCT/CAPES研究项目,旨在寻找本体学习和人口过程自动化的技术和工具。使用法律语料库和旅游语料库进行了两个实验,以评估它。结果表明,该方法能够高效地提取和分类实例,并具有领域独立性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1