{"title":"Non-Turing Computers and Non-Turing Computability","authors":"M. Hogarth","doi":"10.1086/psaprocbienmeetp.1994.1.193018","DOIUrl":null,"url":null,"abstract":"A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the \"existence\" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar (\"close\") to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation (e.g. intuitive, finitely programmed, limited in computational capability), a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given.","PeriodicalId":288090,"journal":{"name":"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/psaprocbienmeetp.1994.1.193018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145
Abstract
A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar ("close") to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation (e.g. intuitive, finitely programmed, limited in computational capability), a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given.