A comparative study of convolutional neural networks for mammogram diagnosis

Anongnat Intasam, Y. Promworn, Somchai Thanasitthichai, W. Piyawattanametha
{"title":"A comparative study of convolutional neural networks for mammogram diagnosis","authors":"Anongnat Intasam, Y. Promworn, Somchai Thanasitthichai, W. Piyawattanametha","doi":"10.1109/BMEiCON56653.2022.10012074","DOIUrl":null,"url":null,"abstract":"This work evaluates and compares the architectures: Inceptionv4, InceptionResnetV2, and Resnet152, to classify benign and malignant. We evaluate the architectures with a statistical analysis base on the received operational characteristics (ROC), accuracy, precision, recall, and F1 score. We generate the best results with the CNN InceptionResnetV2 trained with two classes on a balanced mammogram database. The results for benign cases have a ROC of 0.93, a precision of 0.8319, a recall of 0.9216, and an F1-score of 0.8744. The results for malignant cases have a ROC of 0.91, a precision of 0.9121, a recall of 0.8137, and an F1-score of 0.8601.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work evaluates and compares the architectures: Inceptionv4, InceptionResnetV2, and Resnet152, to classify benign and malignant. We evaluate the architectures with a statistical analysis base on the received operational characteristics (ROC), accuracy, precision, recall, and F1 score. We generate the best results with the CNN InceptionResnetV2 trained with two classes on a balanced mammogram database. The results for benign cases have a ROC of 0.93, a precision of 0.8319, a recall of 0.9216, and an F1-score of 0.8744. The results for malignant cases have a ROC of 0.91, a precision of 0.9121, a recall of 0.8137, and an F1-score of 0.8601.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络在乳腺x线影像诊断中的比较研究
这项工作评估并比较了体系结构:Inceptionv4、InceptionResnetV2和Resnet152,以分类良性和恶性。我们基于接收到的操作特征(ROC)、准确性、精密度、召回率和F1分数进行统计分析来评估这些架构。我们在平衡的乳房x线照片数据库上用两个类训练的CNN InceptionResnetV2产生了最好的结果。良性病例的ROC为0.93,准确率为0.8319,召回率为0.9216,f1评分为0.8744。恶性病例的ROC为0.91,准确率为0.9121,召回率为0.8137,f1评分为0.8601。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depressive states in healthy individuals lead to biased processing on frontal-parietal ERPs The effect of visual cognition on the fear caused by pain recall A Prussian Blue Modified Electrode Based Amperometric Sensor for Lactate Determination On the generalized inverse for MRI reconstruction Preliminary Study of the Relationship Between Age and Gender using Sounds Generated from the Nostrils and Pharynx During Swallowing in Healthy Subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1