Robust features for speech recognition systems

A. Bayya, B. Yegnanarayana
{"title":"Robust features for speech recognition systems","authors":"A. Bayya, B. Yegnanarayana","doi":"10.21437/ICSLP.1998-316","DOIUrl":null,"url":null,"abstract":"In this paper we propose a set of features based on group delay spectrum for speech recognition systems. These features appear to be more robust to channel variations and environmental changes compared to features based on Melspectral coefficients. The main idea is to derive cepstrumlike features from group delay spectrum instead of deriving them from power spectrum. The group delay spectrum is computed from modified auto-correlation-like function. The effectiveness of the new feature set is demonstrated by the results of both speaker-independent (SI) and speaker-dependent (SD) recognition tasks. Preliminary results indicate that using the new features, we can obtain results comparable to Mel cepstra and PLP cepstra in most of the cases and a slight improvement in noisy cases. More optimization of the parameters is needed to fully exploit the nature of the new features.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we propose a set of features based on group delay spectrum for speech recognition systems. These features appear to be more robust to channel variations and environmental changes compared to features based on Melspectral coefficients. The main idea is to derive cepstrumlike features from group delay spectrum instead of deriving them from power spectrum. The group delay spectrum is computed from modified auto-correlation-like function. The effectiveness of the new feature set is demonstrated by the results of both speaker-independent (SI) and speaker-dependent (SD) recognition tasks. Preliminary results indicate that using the new features, we can obtain results comparable to Mel cepstra and PLP cepstra in most of the cases and a slight improvement in noisy cases. More optimization of the parameters is needed to fully exploit the nature of the new features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音识别系统的鲁棒特性
本文提出了一套基于群延迟谱的语音识别系统特征。与基于mel谱系数的特征相比,这些特征似乎对通道变化和环境变化更加稳健。主要思想是从群延迟谱中推导倒频谱特征,而不是从功率谱中推导倒频谱特征。利用改进的类自相关函数计算群延迟谱。独立于说话人(SI)和依赖于说话人(SD)的识别结果证明了新特征集的有效性。初步结果表明,利用这些新特征,我们在大多数情况下可以获得与Mel倒频谱和PLP倒频谱相当的结果,在有噪声的情况下略有改善。为了充分利用新特征的性质,需要对参数进行更多的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1