The g-Extra Conditional Diagnosability of Graphs in Terms of g-Extra Connectivity

Aixia Liu, Jun Yuan, Shiying Wang
{"title":"The g-Extra Conditional Diagnosability of Graphs in Terms of g-Extra Connectivity","authors":"Aixia Liu, Jun Yuan, Shiying Wang","doi":"10.1142/S012962642040006X","DOIUrl":null,"url":null,"abstract":"The [Formula: see text]-extra conditional diagnosability and [Formula: see text]-extra connectivity are two important parameters to measure ability of diagnosing faulty processors and fault tolerance in a multiprocessor system. The [Formula: see text]-extra conditional diagnosability [Formula: see text] of graph [Formula: see text] is defined as the diagnosability of a multiprocessor system under the assumption that every fault-free component contains more than [Formula: see text] vertices. While the [Formula: see text]-extra connectivity [Formula: see text] of graph [Formula: see text] is the minimum number [Formula: see text] for which there is a vertex cut [Formula: see text] with [Formula: see text] such that every component of [Formula: see text] has more than [Formula: see text] vertices. In this paper, we study the [Formula: see text]-extra conditional diagnosability of graph [Formula: see text] in terms of its [Formula: see text]-extra connectivity, and show that [Formula: see text] under the MM* model with some acceptable conditions. As applications, the [Formula: see text]-extra conditional diagnosability is determined for some BC networks such as hypercubes, varietal hypercubes, and [Formula: see text]-ary [Formula: see text]-cubes under the MM* model.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012962642040006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The [Formula: see text]-extra conditional diagnosability and [Formula: see text]-extra connectivity are two important parameters to measure ability of diagnosing faulty processors and fault tolerance in a multiprocessor system. The [Formula: see text]-extra conditional diagnosability [Formula: see text] of graph [Formula: see text] is defined as the diagnosability of a multiprocessor system under the assumption that every fault-free component contains more than [Formula: see text] vertices. While the [Formula: see text]-extra connectivity [Formula: see text] of graph [Formula: see text] is the minimum number [Formula: see text] for which there is a vertex cut [Formula: see text] with [Formula: see text] such that every component of [Formula: see text] has more than [Formula: see text] vertices. In this paper, we study the [Formula: see text]-extra conditional diagnosability of graph [Formula: see text] in terms of its [Formula: see text]-extra connectivity, and show that [Formula: see text] under the MM* model with some acceptable conditions. As applications, the [Formula: see text]-extra conditional diagnosability is determined for some BC networks such as hypercubes, varietal hypercubes, and [Formula: see text]-ary [Formula: see text]-cubes under the MM* model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图在g-Extra连通性中的g-Extra条件可诊断性
在多处理器系统中,额外条件可诊断性和额外连通性是衡量故障处理器诊断能力和容错能力的两个重要参数。图[公式:见文]的[公式:见文]-额外条件可诊断性[公式:见文]被定义为假设每个无故障组件包含多个[公式:见文]顶点的多处理器系统的可诊断性。而图的[公式:见文]-额外连通性[公式:见文]是[公式:见文]与[公式:见文]的顶点切割[公式:见文]的最小数量[公式:见文],使得[公式:见文]的每个组成部分都有多个[公式:见文]顶点。本文从图[公式:见文]的[公式:见文]-额外连通的角度研究了图[公式:见文]的[公式:见文]-额外条件可诊断性,并证明了图[公式:见文]在具有一定可接受条件的MM*模型下。作为应用程序,在MM*模型下,[公式:见文]-额外条件可诊断性对于一些BC网络(如超立方体、品种超立方体和[公式:见文]-ary[公式:见文]-立方体)是确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1