Predicting (0, 1)-functions on randomly drawn points

D. Haussler, N. Littlestone, Manfred K. Warmuth
{"title":"Predicting (0, 1)-functions on randomly drawn points","authors":"D. Haussler, N. Littlestone, Manfred K. Warmuth","doi":"10.1109/SFCS.1988.21928","DOIUrl":null,"url":null,"abstract":"The authors consider the problem of predicting (0, 1)-valued functions on R/sup n/ and smaller domains, based on their values on randomly drawn points. Their model is related to L.G. Valiant's learnability model (1984), but does not require the hypotheses used for prediction to be represented in any specified form. The authors first disregard computational complexity and show how to construct prediction strategies that are optimal to within a constant factor for any reasonable class F of target functions. These prediction strategies use the 1-inclusion graph structure from N. Alon et al.'s work on geometric range queries (1987) to minimize the probability of incorrect prediction. They then turn to computationally efficient algorithms. For indicator functions of axis-parallel rectangles and halfspaces in R/sup n/, they demonstrate how their techniques can be applied to construct computational efficient prediction strategies that are optimal to within a constant factor. They compare the general performance of prediction strategies derived by their method to those derived from existing methods in Valiant's learnability theory.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"274","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 274

Abstract

The authors consider the problem of predicting (0, 1)-valued functions on R/sup n/ and smaller domains, based on their values on randomly drawn points. Their model is related to L.G. Valiant's learnability model (1984), but does not require the hypotheses used for prediction to be represented in any specified form. The authors first disregard computational complexity and show how to construct prediction strategies that are optimal to within a constant factor for any reasonable class F of target functions. These prediction strategies use the 1-inclusion graph structure from N. Alon et al.'s work on geometric range queries (1987) to minimize the probability of incorrect prediction. They then turn to computationally efficient algorithms. For indicator functions of axis-parallel rectangles and halfspaces in R/sup n/, they demonstrate how their techniques can be applied to construct computational efficient prediction strategies that are optimal to within a constant factor. They compare the general performance of prediction strategies derived by their method to those derived from existing methods in Valiant's learnability theory.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在随机绘制的点上预测(0,1)函数
作者考虑了基于随机绘制的点上的值在R/sup n/和更小的域上预测(0,1)值函数的问题。他们的模型与L.G. Valiant的可学习性模型(1984)有关,但不要求用于预测的假设以任何特定的形式表示。作者首先忽略了计算复杂性,并展示了如何构建预测策略,该策略在任何合理的F类目标函数的常数因子内是最优的。这些预测策略使用N. Alon等人在几何范围查询(1987)上的工作中的1-包含图结构来最小化错误预测的概率。然后他们转向计算效率高的算法。对于R/sup /中的轴平行矩形和半空间的指示函数,他们演示了如何应用他们的技术来构建在恒定因子内最优的计算效率预测策略。他们将他们的方法得出的预测策略的一般性能与Valiant的可学习性理论中现有方法得出的预测策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combinatorial complexity bounds for arrangements of curves and surfaces Genus g graphs have pagenumber O( square root g) Optimal parallel algorithm for the Hamiltonian cycle problem on dense graphs Covering polygons is hard New upper bounds in Klee's measure problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1