ICRH system for the Ignitor machine

F. Carpignano, B. Coppi, M. Nassi
{"title":"ICRH system for the Ignitor machine","authors":"F. Carpignano, B. Coppi, M. Nassi","doi":"10.1109/FUSION.1993.518506","DOIUrl":null,"url":null,"abstract":"The ICRH system adopted for the Ignitor machine is characterized by a maximum power delivered to the plasma of 18 MW and a wide range of operating frequencies (100</spl nu/<210 MHz). The main functions of the system are to control the time evolution of the plasma temperature and the toroidal current density profiles, to keep the region where g<1 small and to suppress the possible onset of sawtooth oscillations by fast particle stabilization in relatively low plasma density discharges. The ICRH system can also be used to accelerate the attainment of ignition, to extend the conditions under which ignition is possible, to explore the conditions under which the second stability region of finite /spl beta/ plasmas can be achieved, to produce significant levels of power from D-/sup 3/He fusion reactions, to reduce the Volt-sec requirement and to perform current drive experiments in low density discharges (n/sub e/<2/spl times/10/sup 20/ m/sup -3/). The wide range of frequencies has been adopted in order to operate in different regimes (/spl omega/=/spl omega//sub CD/, /spl omega/(C/sup 3/)/sub He/, 2/spl omega//sub CT/, /spl omega//sub CH/ at maximum toroidal magnetic field). This additional source of heating allows Ignitor to produce a significant level of /spl alpha/ power in low plasma current and low toroidal magnetic field discharges, while operating at lower mechanical and thermal stresses and sustaining the discharges for a longer period of time. The ICRH system is composed of 6 antennae, completely inserted in first wall recesses, that are driven by amplifiers through the equatorial ports of the machine. Each antenna module composed of straps grouped in poloidal pairs, is able to couple up to 3 MW of heating power to the plasma.","PeriodicalId":365814,"journal":{"name":"15th IEEE/NPSS Symposium. Fusion Engineering","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/NPSS Symposium. Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1993.518506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ICRH system adopted for the Ignitor machine is characterized by a maximum power delivered to the plasma of 18 MW and a wide range of operating frequencies (100
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点火器机的ICRH系统
Ignitor机器采用的ICRH系统的特点是提供给等离子体的最大功率为18 MW,工作频率范围宽(100
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1