Partial AUC for Differentiated Gene Detection

Zhenqiu Liu, T. Hyslop
{"title":"Partial AUC for Differentiated Gene Detection","authors":"Zhenqiu Liu, T. Hyslop","doi":"10.1109/BIBE.2010.68","DOIUrl":null,"url":null,"abstract":"Partial AUC (pAUC) represents the area with a restricted range of specificity (e.g. low false positive rate). It may identify important regional differentiated genes missed by full-range analysis. Unlike the popular t-test, which is based on the mean difference and the standard deviation between the disease and health groups, pAUC based test statistic relies on the rank of a gene in different samples. It can effectively detect genes that are not significant in a t-test and only differentiated in a subset of the disease groups. Our experiments with real gene expression data show that the proposed pAUC statistic is appealing in terms of both detection power and the biological relevance of the results.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Partial AUC (pAUC) represents the area with a restricted range of specificity (e.g. low false positive rate). It may identify important regional differentiated genes missed by full-range analysis. Unlike the popular t-test, which is based on the mean difference and the standard deviation between the disease and health groups, pAUC based test statistic relies on the rank of a gene in different samples. It can effectively detect genes that are not significant in a t-test and only differentiated in a subset of the disease groups. Our experiments with real gene expression data show that the proposed pAUC statistic is appealing in terms of both detection power and the biological relevance of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分AUC用于分化基因检测
局部AUC (pAUC)表示特异性范围有限的区域(如低假阳性率)。它可以识别全范围分析遗漏的重要区域分化基因。与基于疾病组和健康组之间的平均差异和标准偏差的流行t检验不同,基于pac的检验统计依赖于不同样本中基因的等级。它可以有效地检测在t检验中不显著的基因,并且仅在疾病组的一个子集中分化。我们对真实基因表达数据的实验表明,所提出的pac统计在检测能力和结果的生物学相关性方面都很有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1