Attacker Capability based Dynamic Deception Model for Large-Scale Networks

Md Ali Reza Al Amin, S. Shetty, L. Njilla, Deepak K. Tosh, Charles Kamouha
{"title":"Attacker Capability based Dynamic Deception Model for Large-Scale Networks","authors":"Md Ali Reza Al Amin, S. Shetty, L. Njilla, Deepak K. Tosh, Charles Kamouha","doi":"10.4108/eai.13-7-2018.162808","DOIUrl":null,"url":null,"abstract":"In modern days, cyber networks need continuous monitoring to keep the network secure and available to legitimate users. Cyber attackers use reconnaissance mission to collect critical network information and using that information, they make an advanced level cyber-attack plan. To thwart the reconnaissance mission and counterattack plan, the cyber defender needs to come up with a state-of-the-art cyber defense strategy. In this paper, we model a dynamic deception system (DDS) which will not only thwart reconnaissance mission but also steer the attacker towards fake network to achieve a fake goal state. In our model, we also capture the attacker’s capability using a belief matrix which is a joint probability distribution over the security states and attacker types. Experiments conducted on the prototype implementation of our DDS confirm that the defender can make the decision whether to spend more resources or save resources based on attacker types and thwart reconnaissance mission.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.162808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In modern days, cyber networks need continuous monitoring to keep the network secure and available to legitimate users. Cyber attackers use reconnaissance mission to collect critical network information and using that information, they make an advanced level cyber-attack plan. To thwart the reconnaissance mission and counterattack plan, the cyber defender needs to come up with a state-of-the-art cyber defense strategy. In this paper, we model a dynamic deception system (DDS) which will not only thwart reconnaissance mission but also steer the attacker towards fake network to achieve a fake goal state. In our model, we also capture the attacker’s capability using a belief matrix which is a joint probability distribution over the security states and attacker types. Experiments conducted on the prototype implementation of our DDS confirm that the defender can make the decision whether to spend more resources or save resources based on attacker types and thwart reconnaissance mission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于攻击者能力的大规模网络动态欺骗模型
在现代,网络需要持续监控,以保证网络的安全,并对合法用户可用。网络攻击者利用侦察任务收集关键网络信息,并利用这些信息制定高级网络攻击计划。为了阻止侦察任务和反击计划,网络防御者需要制定最先进的网络防御战略。在本文中,我们建立了一个动态欺骗系统(DDS),该系统不仅可以阻止侦察任务,还可以引导攻击者走向虚假网络,以达到虚假的目标状态。在我们的模型中,我们还使用一个信念矩阵来捕获攻击者的能力,该矩阵是安全状态和攻击者类型的联合概率分布。在我们的DDS原型实现上进行的实验证实,防御者可以根据攻击者的类型来决定是花费更多的资源还是节省资源,从而阻止侦察任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1