Semiparametric modelling of spatial binary observations

M. Alfò, P. Postiglione
{"title":"Semiparametric modelling of spatial binary observations","authors":"M. Alfò, P. Postiglione","doi":"10.1191/1471082x02st023oa","DOIUrl":null,"url":null,"abstract":"In the past decade various attempts have been made to extend standard random effects models to the analysis of spatial observations. This extension is a source of theoretical difficulty due to the multidirectional dependence among nearest observations; much of the previous work was based on parametric assumptions about the random effects distribution. To avoid any restriction, we propose a conditional model for spatial binary responses, without assuming a parametric distribution for the random effects. The model parameters are estimated using the EM algorithm for nonparametric maximum likelihood estimation of a mixing distribution. To illustrate the proposed approach, the model is applied to a remote sensed image of the Nebrodi Mountains (Italy).","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st023oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the past decade various attempts have been made to extend standard random effects models to the analysis of spatial observations. This extension is a source of theoretical difficulty due to the multidirectional dependence among nearest observations; much of the previous work was based on parametric assumptions about the random effects distribution. To avoid any restriction, we propose a conditional model for spatial binary responses, without assuming a parametric distribution for the random effects. The model parameters are estimated using the EM algorithm for nonparametric maximum likelihood estimation of a mixing distribution. To illustrate the proposed approach, the model is applied to a remote sensed image of the Nebrodi Mountains (Italy).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间二元观测的半参数建模
在过去十年中,人们进行了各种尝试,将标准随机效应模型扩展到空间观测的分析中。由于最近观测之间的多向依赖,这种扩展是理论困难的来源;以前的大部分工作都是基于随机效应分布的参数假设。为了避免任何限制,我们提出了一个空间二元响应的条件模型,而不假设随机效应的参数分布。利用EM算法对混合分布进行非参数极大似然估计,对模型参数进行估计。为了说明所提出的方法,将该模型应用于Nebrodi山脉(意大利)的遥感图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1