{"title":"Dysarthric Speech Augmentation Using Prosodic Transformation and Masking for Subword End-to-end ASR","authors":"M. Soleymanpour, Michael T. Johnson, J. Berry","doi":"10.1109/sped53181.2021.9587372","DOIUrl":null,"url":null,"abstract":"End-to-end speech recognition systems are effective, but in order to train an end-to-end model, a large amount of training data is needed. For applications such as dysarthric speech recognition, we do not have sufficient data. In this paper, we propose a specialized data augmentation approach to enhance the performance of an end-to-end dysarthric ASR based on sub-word models. The proposed approach contains two methods, including prosodic transformation and time-feature masking. Prosodic transformation modifies the speaking rate and pitch of normal speech to control prosodic characteristics such as loudness, intonation, and rhythm. Using time and feature masking, we apply a mask to the Mel Frequency Cepstral Coefficients (MFCC) for robustness-focused augmentation. Results show that augmenting normal speech with prosodic transformation plus masking decreases CER by 5.4% and WER by 5.6%, and the further addition of dysarthric speech masking decreases CER by 11.3% and WER by 11.4%.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
End-to-end speech recognition systems are effective, but in order to train an end-to-end model, a large amount of training data is needed. For applications such as dysarthric speech recognition, we do not have sufficient data. In this paper, we propose a specialized data augmentation approach to enhance the performance of an end-to-end dysarthric ASR based on sub-word models. The proposed approach contains two methods, including prosodic transformation and time-feature masking. Prosodic transformation modifies the speaking rate and pitch of normal speech to control prosodic characteristics such as loudness, intonation, and rhythm. Using time and feature masking, we apply a mask to the Mel Frequency Cepstral Coefficients (MFCC) for robustness-focused augmentation. Results show that augmenting normal speech with prosodic transformation plus masking decreases CER by 5.4% and WER by 5.6%, and the further addition of dysarthric speech masking decreases CER by 11.3% and WER by 11.4%.