On the Rényi Cross-Entropy

Ferenc Cole Thierrin, F. Alajaji, T. Linder
{"title":"On the Rényi Cross-Entropy","authors":"Ferenc Cole Thierrin, F. Alajaji, T. Linder","doi":"10.48550/arXiv.2206.14329","DOIUrl":null,"url":null,"abstract":"The Rényi cross-entropy measure between two distributions, a generalization of the Shannon cross-entropy, was recently used as a loss function for the improved design of deep learning generative adversarial networks. In this work, we examine the properties of this measure and derive closed-form expressions for it when one of the distributions is fixed and when both distributions belong to the exponential family. We also analytically determine a formula for the cross-entropy rate for stationary Gaussian processes and for finite-alphabet Markov sources.","PeriodicalId":401562,"journal":{"name":"2022 17th Canadian Workshop on Information Theory (CWIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.14329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Rényi cross-entropy measure between two distributions, a generalization of the Shannon cross-entropy, was recently used as a loss function for the improved design of deep learning generative adversarial networks. In this work, we examine the properties of this measure and derive closed-form expressions for it when one of the distributions is fixed and when both distributions belong to the exponential family. We also analytically determine a formula for the cross-entropy rate for stationary Gaussian processes and for finite-alphabet Markov sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于r交叉熵
两个分布之间的rsamunyi交叉熵度量是Shannon交叉熵的一种推广,最近被用作深度学习生成对抗网络改进设计的损失函数。在这项工作中,我们研究了这一测度的性质,并推导了当其中一个分布是固定的,当两个分布都属于指数族时它的封闭形式表达式。我们还解析地确定了平稳高斯过程和有限字母马尔可夫源的交叉熵率公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protograph-based LDPC codes with chordless short cycles and large minimum distance Space-Time Interleaved OFDM Systems in Impulsive Noise and Mobile Fading Channels SAPA: Sparse Affine Projection Algorithm in ADMM-LP Decoding of LDPC Codes A Lego- Brick Approach to Lossy Source Coding Intra C-RAN Two-Way Multi-Pair Computation under Total Power and Fronthaul Capacity Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1