Unconstrained Quantum Genetic Algorithm for Massive MIMO System

Abdulbasit M. A. Sabaawi, Mohammed R. Almasaoodi, Sara El Gaily, S. Imre
{"title":"Unconstrained Quantum Genetic Algorithm for Massive MIMO System","authors":"Abdulbasit M. A. Sabaawi, Mohammed R. Almasaoodi, Sara El Gaily, S. Imre","doi":"10.1109/ConTEL58387.2023.10198943","DOIUrl":null,"url":null,"abstract":"There are plenty of real-world applications that require finding extreme value in an unsorted database. This database can be enormously large, such that there is no available quantum computer or classical supercomputer that can execute the search process. We proposed a new unconstrained quantum genetic algorithm (QGA) in order to increase the probability of finding the global solution and escaping from local minima. This algorithm exploits the features provided by blind quantum computation (BQC), which holds the promise to handle this computation issue by delegating computation to quantum remote devices. Massive multiple-input multiple-output (MIMO) systems are used as a toy example for demonstrating the effectiveness of the developed quantum genetic method.","PeriodicalId":311611,"journal":{"name":"2023 17th International Conference on Telecommunications (ConTEL)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Telecommunications (ConTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ConTEL58387.2023.10198943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are plenty of real-world applications that require finding extreme value in an unsorted database. This database can be enormously large, such that there is no available quantum computer or classical supercomputer that can execute the search process. We proposed a new unconstrained quantum genetic algorithm (QGA) in order to increase the probability of finding the global solution and escaping from local minima. This algorithm exploits the features provided by blind quantum computation (BQC), which holds the promise to handle this computation issue by delegating computation to quantum remote devices. Massive multiple-input multiple-output (MIMO) systems are used as a toy example for demonstrating the effectiveness of the developed quantum genetic method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO系统的无约束量子遗传算法
有许多实际应用程序需要在未排序的数据库中找到极端值。这个数据库可能非常大,以至于没有可用的量子计算机或经典超级计算机可以执行搜索过程。提出了一种新的无约束量子遗传算法(QGA),以提高找到全局解和摆脱局部极小值的概率。该算法利用盲量子计算(BQC)提供的特性,通过将计算委托给量子远程设备来处理此计算问题。以大规模多输入多输出(MIMO)系统为例,演示了所开发的量子遗传方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Home Notifications in Croatian Language: A Transformer-Based Approach Secure Data Aggregation in Cultural Heritage Monitoring: NMEC Case Study A Practical Teaching Tool for Optical Camera Communications A Scalable Infrastructure for Continuous State of Polarisation Monitoring for Revealing Security and Vulnerability Impacts in Optical Networks Energy Optimization of a Base Station using Q-learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1