Support vector machine based dynamic load model using synchrophasor data

Xiaodong Liang, Yi-gang He, Massimo Mitolo, Weixing Li
{"title":"Support vector machine based dynamic load model using synchrophasor data","authors":"Xiaodong Liang, Yi-gang He, Massimo Mitolo, Weixing Li","doi":"10.1109/ICPS.2018.8369961","DOIUrl":null,"url":null,"abstract":"Load modeling remains a challenging task in planning, operation and control of power grids. In this paper, a support vector machine (SVM) based machine learning method is proposed for dynamic load modeling of large scale power systems using synchrophasor data recorded by Phasor Measurement Units (PMUs). The difference equation based dynamic load model structure is recommended, however, if a traditional transfer function based model format is preferred, it can be directly obtained from difference equation based model. Case studies are conducted using PMU data recorded in a large power grid in North America. The accuracy of the developed load models is verified by comparing the simulated load model dynamic response with real PMU data. The proposed method not only provides an accurate dynamic load model, parameters of the load model can also be easily updated using new synchrophasor data for either on-line or off-line applications.","PeriodicalId":142445,"journal":{"name":"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS.2018.8369961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Load modeling remains a challenging task in planning, operation and control of power grids. In this paper, a support vector machine (SVM) based machine learning method is proposed for dynamic load modeling of large scale power systems using synchrophasor data recorded by Phasor Measurement Units (PMUs). The difference equation based dynamic load model structure is recommended, however, if a traditional transfer function based model format is preferred, it can be directly obtained from difference equation based model. Case studies are conducted using PMU data recorded in a large power grid in North America. The accuracy of the developed load models is verified by comparing the simulated load model dynamic response with real PMU data. The proposed method not only provides an accurate dynamic load model, parameters of the load model can also be easily updated using new synchrophasor data for either on-line or off-line applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的同步量数据动态负荷模型
在电网规划、运行和控制中,负荷建模仍然是一项具有挑战性的任务。本文提出了一种基于支持向量机(SVM)的机器学习方法,利用相量测量单元(pmu)记录的同步相量数据对大型电力系统进行动态负荷建模。建议采用基于差分方程的动荷载模型结构,但如果选择传统的基于传递函数的模型格式,则可直接从基于差分方程的模型中获得。案例研究使用北美大型电网中记录的PMU数据进行。通过将模拟的负荷模型动态响应与PMU实际数据进行比较,验证了所建负荷模型的准确性。该方法不仅提供了准确的动态负荷模型,而且可以利用新的同步量数据轻松地更新负荷模型参数,用于在线或离线应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the impact of wind power probabilistic forecasting on very-short-term generation scheduling for Wind-Storage Combined Generation System Emission-aware stochastic resource planning scheme for data center microgrid considering batch workload scheduling and risk management High-resistance grounding protection scheme of 11 kV generating plant Interconnections criteria of grounding grids in global grounding systems AC microgrid grounding strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1