Global anomaly detection in crowded scenes based on optical flow saliency

Ang Li, Z. Miao, Yigang Cen
{"title":"Global anomaly detection in crowded scenes based on optical flow saliency","authors":"Ang Li, Z. Miao, Yigang Cen","doi":"10.1109/MMSP.2016.7813390","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm of global anomaly detection in crowded scenes using the saliency in optical flow field is proposed. Before the process of extracting the histogram of maximal optical flow projection (HMOFP), the scale invariant feature transforms (SIFT) method is utilized to get the saliency map of optical flow field. On the basis of the HMOFP feature of normal frames, the online dictionary learning algorithm is used to train an optimal dictionary with proper redundancy after a process of selecting the training samples, which is better than the dictionary simply composed by the HMOFP feature of the whole training frames. In order to detect whether a frame is normal or not, we use the ℓ1-norm of the sparse reconstruction coefficients (i.e., the sparse reconstruction cost, SRC) to show the anomaly of the testing frame, which is simple but very effective. The experiment results on UMN dataset and the comparison to the state-of-the-art methods show that our algorithm is promising.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, an algorithm of global anomaly detection in crowded scenes using the saliency in optical flow field is proposed. Before the process of extracting the histogram of maximal optical flow projection (HMOFP), the scale invariant feature transforms (SIFT) method is utilized to get the saliency map of optical flow field. On the basis of the HMOFP feature of normal frames, the online dictionary learning algorithm is used to train an optimal dictionary with proper redundancy after a process of selecting the training samples, which is better than the dictionary simply composed by the HMOFP feature of the whole training frames. In order to detect whether a frame is normal or not, we use the ℓ1-norm of the sparse reconstruction coefficients (i.e., the sparse reconstruction cost, SRC) to show the anomaly of the testing frame, which is simple but very effective. The experiment results on UMN dataset and the comparison to the state-of-the-art methods show that our algorithm is promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光流显著性的拥挤场景全局异常检测
本文提出了一种利用光流场显著性进行拥挤场景全局异常检测的算法。在提取最大光流投影直方图(HMOFP)之前,利用尺度不变特征变换(SIFT)方法得到光流场的显著性图。基于正常帧的HMOFP特征,采用在线字典学习算法,经过训练样本的选取过程,训练出具有适当冗余度的最优字典,优于单纯利用整个训练帧的HMOFP特征组成的字典。为了检测帧是否正常,我们使用稀疏重建系数的1-范数(即稀疏重建成本,SRC)来表示测试帧的异常,这种方法简单但非常有效。在UMN数据集上的实验结果以及与现有方法的比较表明,我们的算法是有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized dirichlet mixture matching projection for supervised linear dimensionality reduction of proportional data Mobile live streaming: Insights from the periscope service Low-power distributed sparse recovery testbed on wireless sensor networks Laughter detection based on the fusion of local binary patterns, spectral and prosodic features An embedded 3D geometry score for mobile 3D visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1