Adaptation of the ISODATA clustering algorithm for vector supercomputer execution

G. A. Riccardi, P.H. Schow
{"title":"Adaptation of the ISODATA clustering algorithm for vector supercomputer execution","authors":"G. A. Riccardi, P.H. Schow","doi":"10.1109/SUPERC.1988.74141","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an interdisciplinary study which involves the grouping of similar objects based on their measured attributes. The purpose of a cluster analysis is to investigate the structure and organization of the objects being studied. A description is given of the adaptation of the ISODATA clustering algorithm for vector supercomputer execution. On the CYBER 205, the algorithm runs 30 times faster than the original algorithm on the CYBER 205 using full automatic vectorization and 300 times faster than on a VAX 11/780. The major source of improvement over automatic vectorization is achieved by reorganizing the data structures used by the program. The modified algorithm yields increased performance on any vector computer.<<ETX>>","PeriodicalId":103561,"journal":{"name":"Proceedings Supercomputing Vol.II: Science and Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Supercomputing Vol.II: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUPERC.1988.74141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Cluster analysis is an interdisciplinary study which involves the grouping of similar objects based on their measured attributes. The purpose of a cluster analysis is to investigate the structure and organization of the objects being studied. A description is given of the adaptation of the ISODATA clustering algorithm for vector supercomputer execution. On the CYBER 205, the algorithm runs 30 times faster than the original algorithm on the CYBER 205 using full automatic vectorization and 300 times faster than on a VAX 11/780. The major source of improvement over automatic vectorization is achieved by reorganizing the data structures used by the program. The modified algorithm yields increased performance on any vector computer.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ISODATA聚类算法在矢量超级计算机上的应用
聚类分析是一门跨学科的研究,它涉及到根据它们的测量属性对相似的对象进行分组。聚类分析的目的是调查被研究对象的结构和组织。描述了ISODATA聚类算法在矢量超级计算机执行中的适应性。在CYBER 205上,该算法运行速度比使用全自动矢量化的CYBER 205上的原始算法快30倍,比VAX 11/780快300倍。改进自动向量化的主要来源是通过重新组织程序使用的数据结构来实现的。改进后的算法在任何矢量计算机上都能提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking the performance of physical impact simulation software on vector and parallel computers Finding 95800/sup 4/+217519/sup 4/+414560/sup 4/=422481/sup 4/ on the Connection Machine Complementary processing: a supercomputer/personal computer US census database project Computer modeling of engine knock chemistry Supercomputer applications in computational fluid dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1