An Experimental Analysis of Rain Interference on Detection and Ranging Sensors

Daniel Vriesman, Bernhard Thoresz, Dagmar Steinhauser, A. Zimmer, A. Britto, T. Brandmeier
{"title":"An Experimental Analysis of Rain Interference on Detection and Ranging Sensors","authors":"Daniel Vriesman, Bernhard Thoresz, Dagmar Steinhauser, A. Zimmer, A. Britto, T. Brandmeier","doi":"10.1109/ITSC45102.2020.9294505","DOIUrl":null,"url":null,"abstract":"Performing high level autonomous navigation in a reliable and robust way considering different ambient conditions is a very challenging task. To achieve this goal, a mix of different sensors, such as cameras, lidars, and radars, are normally used to gather information from the environment. Since each sensor works based on different physical principles, they are affected differently by the challenging conditions, like weather interference for example. Looking to explore the influence of high intensity rain (98mm/h), this paper presents a robust experimental protocol that analyzes the influence inside the near field of lidar and radar sensors. The results shows how the effect of rain droplets degrades the backscattering signal from both sensors, affecting the information regarding the target’s dimension. The consequences in terms object and feature detection’es changes are also discussed.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Performing high level autonomous navigation in a reliable and robust way considering different ambient conditions is a very challenging task. To achieve this goal, a mix of different sensors, such as cameras, lidars, and radars, are normally used to gather information from the environment. Since each sensor works based on different physical principles, they are affected differently by the challenging conditions, like weather interference for example. Looking to explore the influence of high intensity rain (98mm/h), this paper presents a robust experimental protocol that analyzes the influence inside the near field of lidar and radar sensors. The results shows how the effect of rain droplets degrades the backscattering signal from both sensors, affecting the information regarding the target’s dimension. The consequences in terms object and feature detection’es changes are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雨对探测和测距传感器干扰的实验分析
考虑到不同的环境条件,以可靠和鲁棒的方式进行高级自主导航是一项非常具有挑战性的任务。为了实现这一目标,通常使用不同传感器的组合,如摄像头、激光雷达和雷达,从环境中收集信息。由于每个传感器基于不同的物理原理工作,因此它们受到具有挑战性的条件(例如天气干扰)的影响不同。为了探索高强度降雨(98mm/h)的影响,本文提出了一个鲁棒的实验方案,分析了激光雷达和雷达传感器近场内部的影响。结果表明,雨滴的作用降低了两个传感器的后向散射信号,影响了目标尺寸的信息。本文还讨论了对象和特征检测变化的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-TMS: Connected Vehicles enabled Road Traffic Congestion Mitigation System using Virtual Road Capacity Inflation A novel concept for validation of pre-crash perception sensor information using contact sensor Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System Weakly-supervised Road Condition Classification Using Automatically Generated Labels Studying the Impact of Public Transport on Disaster Evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1