Online identification of nonlinear mechanics using extended Kalman filters with basis function networks

S. Beineke, F. Schutte, H. Grotstollen
{"title":"Online identification of nonlinear mechanics using extended Kalman filters with basis function networks","authors":"S. Beineke, F. Schutte, H. Grotstollen","doi":"10.1109/IECON.1997.671069","DOIUrl":null,"url":null,"abstract":"For high performance speed and position control of electrical drives, fast online identification is needed for time-varying inertia or load conditions in combination with adaptive controllers. In this paper extended Kalman filters are applied and optimized for deterministic parameter variations by integrating basis function networks into the common structure of the Kalman filter. It is shown that learning of nonlinear load or parameter characteristics becomes feasible by this measure and the performance of the extended Kalman filter can be improved.","PeriodicalId":404447,"journal":{"name":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1997.671069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

For high performance speed and position control of electrical drives, fast online identification is needed for time-varying inertia or load conditions in combination with adaptive controllers. In this paper extended Kalman filters are applied and optimized for deterministic parameter variations by integrating basis function networks into the common structure of the Kalman filter. It is shown that learning of nonlinear load or parameter characteristics becomes feasible by this measure and the performance of the extended Kalman filter can be improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基函数网络扩展卡尔曼滤波的非线性力学在线辨识
为了实现电力驱动的高性能速度和位置控制,需要结合自适应控制器对时变惯性或负载条件进行快速在线识别。本文通过将基函数网络集成到卡尔曼滤波器的公共结构中,应用扩展卡尔曼滤波器对确定性参数变化进行优化。结果表明,该方法对非线性负载或参数特性的学习是可行的,可以提高扩展卡尔曼滤波器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational intelligence in robotics and mechatronics Analysis and classical control design of servo system using high order disturbance observer A new set of topologies for multiple-output converters with zero switching losses Auto-tuning control of self-commissioning electric drives Control philosophies of PWM inverter-fed induction motors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1