{"title":"Parameter estimation for nonlinear systems: adaptive innovations model filters vs. adaptive extended Kalman filters","authors":"C. Bohn","doi":"10.1109/ICIT.2000.854232","DOIUrl":null,"url":null,"abstract":"The problem of recursively estimating the states and parameters of a nonlinear continuous-time system with discrete measurements is investigated. As a new method, an adaptive extended Kalman filter is proposed and compared to an existing approach, an innovations model filter. By means of a simulation example, it is illustrated that both methods are capable of estimating the parameters of a nonlinear system, but that due to the time-varying filter gain in the new method, better state estimates are obtained. The new method is therefore considered a valuable alternative to existing methods.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The problem of recursively estimating the states and parameters of a nonlinear continuous-time system with discrete measurements is investigated. As a new method, an adaptive extended Kalman filter is proposed and compared to an existing approach, an innovations model filter. By means of a simulation example, it is illustrated that both methods are capable of estimating the parameters of a nonlinear system, but that due to the time-varying filter gain in the new method, better state estimates are obtained. The new method is therefore considered a valuable alternative to existing methods.