Classification With Unimodular Matrices In Hybrid Models

Dominic Pasquali
{"title":"Classification With Unimodular Matrices In Hybrid Models","authors":"Dominic Pasquali","doi":"10.1109/SEC54971.2022.00063","DOIUrl":null,"url":null,"abstract":"Guessing the architecture of a variational quantum circuit can be fraught with error, since determining the correct locations and types of parameterized quantum gates is often an empirical task. This work demonstrates that using a general parameterized unimodular matrix achieves a higher classification accuracy faster than comparable classical models. Variations of this ansatz and the performance results are explored and discussed to analyze this approach.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Guessing the architecture of a variational quantum circuit can be fraught with error, since determining the correct locations and types of parameterized quantum gates is often an empirical task. This work demonstrates that using a general parameterized unimodular matrix achieves a higher classification accuracy faster than comparable classical models. Variations of this ansatz and the performance results are explored and discussed to analyze this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合模型中单模矩阵的分类
猜测变分量子电路的结构可能充满错误,因为确定参数化量子门的正确位置和类型通常是一项经验任务。这项工作表明,使用一般参数化单模矩阵可以比可比的经典模型更快地实现更高的分类精度。为了分析这种方法,我们探索和讨论了这种分析的变化和性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1