Cooling Fan Combined Fault Vibration Analysis Using Convolutional Neural Network Classifier

A. Dekhane, Adel Djellal, Fouaz Boutebbakh, R. Lakel
{"title":"Cooling Fan Combined Fault Vibration Analysis Using Convolutional Neural Network Classifier","authors":"A. Dekhane, Adel Djellal, Fouaz Boutebbakh, R. Lakel","doi":"10.1145/3386723.3387898","DOIUrl":null,"url":null,"abstract":"In this paper, an application of Convolutional Neural Network (CNN) to detect a predefined fault in vibration signal without any feature extraction. The vibration signal, after being normalized, is converted into a 2-D data called vibration image, and these images are passed in the CNN as input to detect whether there is a fault or not. Experiments are carried out with bearing data from the cooling Fan of a cement oven in CILAS-Biskra. Tests are done using different image sizes, and different training/testing data sets.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an application of Convolutional Neural Network (CNN) to detect a predefined fault in vibration signal without any feature extraction. The vibration signal, after being normalized, is converted into a 2-D data called vibration image, and these images are passed in the CNN as input to detect whether there is a fault or not. Experiments are carried out with bearing data from the cooling Fan of a cement oven in CILAS-Biskra. Tests are done using different image sizes, and different training/testing data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络分类器的冷却风扇组合故障振动分析
本文在不进行特征提取的情况下,应用卷积神经网络(CNN)检测振动信号中的预定义故障。振动信号经过归一化处理后,转换为二维数据,称为振动图像,这些图像作为输入传递到CNN中,用于检测是否存在故障。利用CILAS-Biskra水泥炉冷却风扇的轴承数据进行了实验。测试使用不同的图像大小和不同的训练/测试数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1