Improving Accuracy for Intrusion Detection through Layered Approach Using Support Vector Machine with Feature Reduction

A. Nema, B. Tiwari, V. Tiwari
{"title":"Improving Accuracy for Intrusion Detection through Layered Approach Using Support Vector Machine with Feature Reduction","authors":"A. Nema, B. Tiwari, V. Tiwari","doi":"10.1145/2909067.2909100","DOIUrl":null,"url":null,"abstract":"Digital information security is the field of information technology which deal with all about identification and protection of information. Whereas, identification of the threat of any Intrusion Detection System (IDS) in the most challenging phase. Threat detection become most promising because rest of the IDS system phase depends on the solely on \"what is identified\". In this view, a multilayered framework has been discussed which handles the underlying features for the identification of various attack (DoS, R2L, U2R, Probe). The experiments validates the use SVM with genetic approach is efficient.","PeriodicalId":371590,"journal":{"name":"Women In Research","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Women In Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2909067.2909100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Digital information security is the field of information technology which deal with all about identification and protection of information. Whereas, identification of the threat of any Intrusion Detection System (IDS) in the most challenging phase. Threat detection become most promising because rest of the IDS system phase depends on the solely on "what is identified". In this view, a multilayered framework has been discussed which handles the underlying features for the identification of various attack (DoS, R2L, U2R, Probe). The experiments validates the use SVM with genetic approach is efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征约简的支持向量机分层方法提高入侵检测精度
数字信息安全是涉及信息识别和保护的信息技术领域。然而,识别入侵检测系统(IDS)的威胁是最具挑战性的阶段。威胁检测成为最有希望的,因为IDS系统阶段的其余部分完全取决于“识别什么”。在这个观点中,我们讨论了一个多层框架,它处理识别各种攻击(DoS, R2L, U2R, Probe)的底层特征。实验验证了支持向量机与遗传方法的结合是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Handling Uncertainty in Linguistics Using Probability Theory Secure Sum Computation Using Homomorphic Encryption Skyline Computation for Big Data Missing Value Imputation in Medical Records for Remote Health Care A Review of Wireless Charging Nodes in Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1