Advanced Dynamic Virtual Power Plants with Electric Vehicle Integration

Adithya Ravikumar, S. Deilami, Foad Taghizadeh
{"title":"Advanced Dynamic Virtual Power Plants with Electric Vehicle Integration","authors":"Adithya Ravikumar, S. Deilami, Foad Taghizadeh","doi":"10.1109/iSPEC54162.2022.10033028","DOIUrl":null,"url":null,"abstract":"Electric vehicles (EVs) are the possible solution to reach for the goal of reliable and sustainable environment and electrifying the transportation system. EV integration is widely done by introducing the virtual power plant (VPP) concept in which the EVs can be clustered and controlled together. By this way one single VPP or aggregator model can be used to solve the challenges in the grid such as power quality, systems losses, and peak demand management. This paper will first analyze the conventional single VPP model and its application. The research work will then propose a new strategy to overcome its limitation for flexible use of EVs by introducing a dynamic virtual power plant (DVPP) algorithm. This algorithm is able to cluster the EVs into different virtual power plants based on the EVs’ present state of charge (SOC) and plug-out time. After the formation of different VPP clusters, the EV coordination and vehicle to grid (V2G) optimization of each VPP cluster are formulated as a mixed integer nonlinear optimization model while subjected to grid constraints. The proposed methodology is evaluated by MATLAB and Open-DSS simulation and the results indicate that the proposed approach has better grid performance than the conventional single fixed VPP model.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10033028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electric vehicles (EVs) are the possible solution to reach for the goal of reliable and sustainable environment and electrifying the transportation system. EV integration is widely done by introducing the virtual power plant (VPP) concept in which the EVs can be clustered and controlled together. By this way one single VPP or aggregator model can be used to solve the challenges in the grid such as power quality, systems losses, and peak demand management. This paper will first analyze the conventional single VPP model and its application. The research work will then propose a new strategy to overcome its limitation for flexible use of EVs by introducing a dynamic virtual power plant (DVPP) algorithm. This algorithm is able to cluster the EVs into different virtual power plants based on the EVs’ present state of charge (SOC) and plug-out time. After the formation of different VPP clusters, the EV coordination and vehicle to grid (V2G) optimization of each VPP cluster are formulated as a mixed integer nonlinear optimization model while subjected to grid constraints. The proposed methodology is evaluated by MATLAB and Open-DSS simulation and the results indicate that the proposed approach has better grid performance than the conventional single fixed VPP model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与电动汽车集成的先进动态虚拟电厂
电动汽车(ev)是实现可靠、可持续的环境目标和交通系统电气化的可能解决方案。通过引入虚拟电厂(VPP)概念,电动汽车可以聚类和控制在一起,电动汽车集成得到了广泛的应用。通过这种方式,可以使用单个VPP或聚合器模型来解决电网中的挑战,例如电力质量、系统损耗和峰值需求管理。本文首先分析了传统的单VPP模型及其应用。然后,研究工作将提出一种新的策略,通过引入动态虚拟发电厂(DVPP)算法来克服电动汽车灵活使用的限制。该算法能够根据电动汽车的荷电状态和插电时间将电动汽车聚类到不同的虚拟电厂中。在形成不同的VPP集群后,将每个VPP集群的电动汽车协调和车辆到电网(V2G)优化制定为一个混合整数非线性优化模型,同时受网格约束。通过MATLAB和Open-DSS仿真对该方法进行了验证,结果表明该方法比传统的单一固定VPP模型具有更好的网格性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization strategy for multi-area DC dispatching control considering frequency constraints Design and Application Research of Synchronous Temporary Block Function between Valve Groups on Modular Multilevel Converter Ultra High Voltage Direct Current System A Multi-Stack Vanadium Redox Flow Battery Model Considering Electrolyte Transfer Delay Analysis of Kuramoto models for AC microgrids based on droop control Nodal Pricing Comparison between DCOPF and ACOPF: Case Studies for the Power Systems in Iceland and Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1