Adaptive PID tracking control based radial basic function networks for a 2-DOF parallel manipulator

Van‐Truong Nguyen, Chyi-Yeu Lin, S. Su, Quoc-Viet Tran
{"title":"Adaptive PID tracking control based radial basic function networks for a 2-DOF parallel manipulator","authors":"Van‐Truong Nguyen, Chyi-Yeu Lin, S. Su, Quoc-Viet Tran","doi":"10.1109/ICSSE.2017.8030887","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive proportional integral derivative (PID) based on radial basic function neural networks (APID-RBFNs) is proposed for tracking control of a 2 degree of freedom (DOF) parallel manipulator. For developing the controller, a dynamic model of this parallel manipulator is developed based on a matrix form equations. APID-RBFNs is designed to overcome external disturbances and complex noises acting on the parallel manipulator system by using adaptive PID sliding surface with RBFNs. By using the Lyapunov method, the stability of the overall system with full state constraints is proved. The simulation results in universal software Matlab/Simulink show that the proposed control strategy has better dynamic performance and robustness than conventional PID tracking control.","PeriodicalId":296191,"journal":{"name":"2017 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2017.8030887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, an adaptive proportional integral derivative (PID) based on radial basic function neural networks (APID-RBFNs) is proposed for tracking control of a 2 degree of freedom (DOF) parallel manipulator. For developing the controller, a dynamic model of this parallel manipulator is developed based on a matrix form equations. APID-RBFNs is designed to overcome external disturbances and complex noises acting on the parallel manipulator system by using adaptive PID sliding surface with RBFNs. By using the Lyapunov method, the stability of the overall system with full state constraints is proved. The simulation results in universal software Matlab/Simulink show that the proposed control strategy has better dynamic performance and robustness than conventional PID tracking control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数网络的二自由度并联机械臂自适应PID跟踪控制
提出了一种基于径向基函数神经网络(PID - rbfns)的自适应比例积分微分(PID)方法,用于2自由度并联机械臂的跟踪控制。为了开发控制器,建立了基于矩阵形式方程的并联机器人动力学模型。PID-RBFNs采用带RBFNs的自适应PID滑动面,克服了外部干扰和复杂噪声对并联机械臂系统的影响。利用Lyapunov方法,证明了系统在全状态约束下的稳定性。在通用软件Matlab/Simulink中的仿真结果表明,所提出的控制策略比传统PID跟踪控制具有更好的动态性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulate a Fuzzy autopilot for an Unmanned Surface Vessel Analysis of voltage-variation results of Taiwan Power System connected with a ring-type high-capacity offshore wind farm Nighttime vehicle detection and classification via headlights trajectories matching Determining the effects of marketing mix on customers' purchase decision using the grey model GM(0,N) - case study of the western style coffeehouse chains in Vietnam A neural control of the parallel Gas Turbine with differential link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1