Low-Dose CT Image Denoising and Pulmonary Nodule Identification

Zheng Chen, Zhengping Yong
{"title":"Low-Dose CT Image Denoising and Pulmonary Nodule Identification","authors":"Zheng Chen, Zhengping Yong","doi":"10.1145/3365245.3365252","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel image denoising and pulmonary nodule identification method for Low-Dose CT images. Due to the decrease of the X-ray dose, LDCT images suffered from high noise and low qualities. We employ a deep convolutional neural network to not only denoise but also extract noise-free features from the noisy LDCT images. Next, these features are used to reconstruct the spatial relationship between CT slices, and we use 3D CNN to extract the spatial features. These features finally fed into a fully connected network to get the nodule identification result. The experimental results on the LUNA16 dataset show that, compared with the current deep learning algorithms, the proposed network model achieves a better sensitivity of 0.809, 0.913 and 0.945 at 1/8, 1 and 8 false positives per scan, respectively, and a higher CPM score of 0.894.","PeriodicalId":151102,"journal":{"name":"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365245.3365252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe a novel image denoising and pulmonary nodule identification method for Low-Dose CT images. Due to the decrease of the X-ray dose, LDCT images suffered from high noise and low qualities. We employ a deep convolutional neural network to not only denoise but also extract noise-free features from the noisy LDCT images. Next, these features are used to reconstruct the spatial relationship between CT slices, and we use 3D CNN to extract the spatial features. These features finally fed into a fully connected network to get the nodule identification result. The experimental results on the LUNA16 dataset show that, compared with the current deep learning algorithms, the proposed network model achieves a better sensitivity of 0.809, 0.913 and 0.945 at 1/8, 1 and 8 false positives per scan, respectively, and a higher CPM score of 0.894.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低剂量CT图像去噪与肺结节识别
本文提出了一种新的低剂量CT图像去噪与肺结节识别方法。由于x射线剂量的降低,LDCT图像存在高噪声、低质量的问题。我们采用深度卷积神经网络对LDCT图像进行去噪,并提取无噪特征。接下来,利用这些特征重构CT切片之间的空间关系,并使用3D CNN提取空间特征。最后将这些特征输入到一个全连通网络中,得到结节识别结果。在LUNA16数据集上的实验结果表明,与现有的深度学习算法相比,本文提出的网络模型在每次扫描1/8次、1次和8次误报时的灵敏度分别为0.809、0.913和0.945,CPM得分为0.894。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precaution Based Cooperation of Licensed Users in Improving the Spectrum Utilization Application of Spatio-Temporal Filtering for Atrial Activity Waveforms Enhancement An Approach of Traffic Accident Scene Reconstruction Using Unmanned Aerial Vehicle Photogrammetry Indoor Positioning Using WiFi RSSI Trilateration and INS Sensor Fusion System Simulation Exact and Asymptotic Secrecy Outage Probability of MIMO System with Hybrid Diversity Combining Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1