Hai-Nam Le, Van-Sang Doan, D. Le, Huu-Hung Nguyen, Thien Huynh-The, Khanh Le-Ha, Van‐Phuc Hoang
{"title":"Micro-Doppler-Radar-Based UAV Detection Using Inception-Residual Neural Network","authors":"Hai-Nam Le, Van-Sang Doan, D. Le, Huu-Hung Nguyen, Thien Huynh-The, Khanh Le-Ha, Van‐Phuc Hoang","doi":"10.1109/ATC50776.2020.9255454","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the performance evaluation of UAV detection based on micro-Doppler radar image data with the proposed inception-residual neural network (IRNN). Accordingly, the network is designed and analyzed by changing network hyper-parameters through experiment with the Real Doppler RAD-DAR (RDRD) dataset that is collected by the practical measurements. Numerical analysis results show that the proposed network with 16 filters yield a good trade-off between accuracy and time-consuming performances. Moreover, the network is taken into account for competing with three other networks. Due to inception-residual structure, the proposed network remarkably outperforms other ones.","PeriodicalId":218972,"journal":{"name":"2020 International Conference on Advanced Technologies for Communications (ATC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC50776.2020.9255454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper demonstrates the performance evaluation of UAV detection based on micro-Doppler radar image data with the proposed inception-residual neural network (IRNN). Accordingly, the network is designed and analyzed by changing network hyper-parameters through experiment with the Real Doppler RAD-DAR (RDRD) dataset that is collected by the practical measurements. Numerical analysis results show that the proposed network with 16 filters yield a good trade-off between accuracy and time-consuming performances. Moreover, the network is taken into account for competing with three other networks. Due to inception-residual structure, the proposed network remarkably outperforms other ones.