V. Albero, A. Espinós, E. Serra, M. L. Romero, A. Hospitaler
{"title":"Experimental study on the thermal behaviour of fire exposed slim-floor beams","authors":"V. Albero, A. Espinós, E. Serra, M. L. Romero, A. Hospitaler","doi":"10.4995/ASCCS2018.2018.8288","DOIUrl":null,"url":null,"abstract":"Steel-concrete composite beams embedded in floors (slim-floors) offer various advantages such as the floor thickness reduction or the ease of installation of under-floor technical equipment. However, this typology presents important differences in terms of thermal behaviour, as compared to other composite beams, when exposed to elevated temperatures. These differences are due to their special configuration, being totally contained within the concrete floor depth. Moreover, the current European fire design code for composite steel-concrete structures (EN 1994-1-2) does not provide any simplified thermal model to evaluate the temperature evolution of each slim-floor part during a fire. Additionally, only a few experimental studies can be found which may help understand the thermal behaviour of these composite beams. This paper presents an experimental investigation on the thermal behaviour of slim-floor beams. Electrical radiative panels were used in the test setup to produce the thermal heating. The thermal gap between the lower flange of the steel profile and the bottom steel plate was studied, being found to be one of the most influential elements over the cross-section temperature gradient. The experimental campaign was developed by varying the cross-section configuration in order to evaluate the influence of this parameter over the slim-floor thermal behavior. Finally, the experiments carried out were used to develop and calibrate a finite element thermal model which may help in further research on the thermal behaviour of slim-floor composite beams.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.8288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Steel-concrete composite beams embedded in floors (slim-floors) offer various advantages such as the floor thickness reduction or the ease of installation of under-floor technical equipment. However, this typology presents important differences in terms of thermal behaviour, as compared to other composite beams, when exposed to elevated temperatures. These differences are due to their special configuration, being totally contained within the concrete floor depth. Moreover, the current European fire design code for composite steel-concrete structures (EN 1994-1-2) does not provide any simplified thermal model to evaluate the temperature evolution of each slim-floor part during a fire. Additionally, only a few experimental studies can be found which may help understand the thermal behaviour of these composite beams. This paper presents an experimental investigation on the thermal behaviour of slim-floor beams. Electrical radiative panels were used in the test setup to produce the thermal heating. The thermal gap between the lower flange of the steel profile and the bottom steel plate was studied, being found to be one of the most influential elements over the cross-section temperature gradient. The experimental campaign was developed by varying the cross-section configuration in order to evaluate the influence of this parameter over the slim-floor thermal behavior. Finally, the experiments carried out were used to develop and calibrate a finite element thermal model which may help in further research on the thermal behaviour of slim-floor composite beams.