Distinct Sampling on Streaming Data with Near-Duplicates

Jiecao Chen, Qin Zhang
{"title":"Distinct Sampling on Streaming Data with Near-Duplicates","authors":"Jiecao Chen, Qin Zhang","doi":"10.1145/3196959.3196978","DOIUrl":null,"url":null,"abstract":"In this paper we study how to perform distinct sampling in the streaming model where data contain near-duplicates. The goal of distinct sampling is to return a distinct element uniformly at random from the universe of elements, given that all the near-duplicates are treated as the same element. We also extend the result to the sliding window cases in which we are only interested in the most recent items. We present algorithms with provable theoretical guarantees for datasets in the Euclidean space, and also verify their effectiveness via an extensive set of experiments.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we study how to perform distinct sampling in the streaming model where data contain near-duplicates. The goal of distinct sampling is to return a distinct element uniformly at random from the universe of elements, given that all the near-duplicates are treated as the same element. We also extend the result to the sliding window cases in which we are only interested in the most recent items. We present algorithms with provable theoretical guarantees for datasets in the Euclidean space, and also verify their effectiveness via an extensive set of experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近重复流数据的不同采样
本文研究了在数据包含近重复项的流模型中如何进行不同采样。不同采样的目标是从所有元素中均匀随机地返回一个不同的元素,假设所有近似重复的元素都被视为相同的元素。我们还将结果扩展到滑动窗口案例,其中我们只对最近的项目感兴趣。我们提出了在欧几里得空间中对数据集具有可证明的理论保证的算法,并通过大量的实验验证了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistent Query Answering for Primary Keys and Conjunctive Queries with Negated Atoms Enumeration of MSO Queries on Strings with Constant Delay and Logarithmic Updates An Operational Approach to Consistent Query Answering Entity Matching with Active Monotone Classification In-memory Representations of Databases via Succinct Data Structures: Tutorial Abstract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1