Tim Chang, H. Mirzaee, F. Katiraei, Marvin Zavala-Iraheta
{"title":"Hardware and software model evaluation of a dynamic load balancer for mitigation of current unbalance in distribution circuits","authors":"Tim Chang, H. Mirzaee, F. Katiraei, Marvin Zavala-Iraheta","doi":"10.1109/ISGT.2017.8085968","DOIUrl":null,"url":null,"abstract":"Current unbalance conditions are a concern to utilities and can negatively affect power quality and safe and reliable system operation if left untreated. Conventional solutions involve physical re-configuration and are typically challenging and less effective as these changes are temporary and will change as circuit and customer load habits evolve. As alternative, power electronic-based devices are promising solutions to mitigating current unbalance. This paper introduces the control theory behind one such power electronics-based Dynamic Load Balancer (DLB) and details the development of a transient software-based simulation model to allow for mitigation planning and performance evaluation in distribution circuits. The physical and software model for DLB were tested under a range of system conditions as verification of model accuracy and also evaluation of the device capabilities and performance.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8085968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current unbalance conditions are a concern to utilities and can negatively affect power quality and safe and reliable system operation if left untreated. Conventional solutions involve physical re-configuration and are typically challenging and less effective as these changes are temporary and will change as circuit and customer load habits evolve. As alternative, power electronic-based devices are promising solutions to mitigating current unbalance. This paper introduces the control theory behind one such power electronics-based Dynamic Load Balancer (DLB) and details the development of a transient software-based simulation model to allow for mitigation planning and performance evaluation in distribution circuits. The physical and software model for DLB were tested under a range of system conditions as verification of model accuracy and also evaluation of the device capabilities and performance.