Graph-assisted Matrix Completion in a Multi-clustered Graph Model

Geewon Suh, Changho Suh
{"title":"Graph-assisted Matrix Completion in a Multi-clustered Graph Model","authors":"Geewon Suh, Changho Suh","doi":"10.1109/ISIT50566.2022.9834685","DOIUrl":null,"url":null,"abstract":"We consider a matrix completion problem that exploits social graph as side information. We develop a computationally efficient algorithm that achieves the optimal sample complexity for the entire regime of graph information under the multiple cluster setting (to be detailed). The key idea is to incorporate a switching mechanism which selects the information employed in the first clustering step, between the following two types: graph & matrix ratings. Our experimental results on both synthetic and real data corroborate our theoretical result as well as demonstrate that our algorithm outperforms prior algorithms that leverage graph side information.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a matrix completion problem that exploits social graph as side information. We develop a computationally efficient algorithm that achieves the optimal sample complexity for the entire regime of graph information under the multiple cluster setting (to be detailed). The key idea is to incorporate a switching mechanism which selects the information employed in the first clustering step, between the following two types: graph & matrix ratings. Our experimental results on both synthetic and real data corroborate our theoretical result as well as demonstrate that our algorithm outperforms prior algorithms that leverage graph side information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多聚类图模型中的图辅助矩阵补全
我们考虑一个利用社交图作为副信息的矩阵补全问题。我们开发了一种计算效率高的算法,该算法在多聚类设置(详细)下实现了整个图信息体系的最佳样本复杂度。关键思想是结合一种切换机制,在以下两种类型之间选择在第一个聚类步骤中使用的信息:图和矩阵评级。我们在合成数据和真实数据上的实验结果证实了我们的理论结果,并证明我们的算法优于利用图侧信息的先前算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1