A Combination of Active Learning and Semi-supervised Learning Starting with Positive and Unlabeled Examples for Word Sense Disambiguation: An Empirical Study on Japanese Web Search Query

Makoto Imamura, Yasuhiro Takayama, Nobuhiro Kaji, Masashi Toyoda, M. Kitsuregawa
{"title":"A Combination of Active Learning and Semi-supervised Learning Starting with Positive and Unlabeled Examples for Word Sense Disambiguation: An Empirical Study on Japanese Web Search Query","authors":"Makoto Imamura, Yasuhiro Takayama, Nobuhiro Kaji, Masashi Toyoda, M. Kitsuregawa","doi":"10.3115/1667583.1667604","DOIUrl":null,"url":null,"abstract":"This paper proposes to solve the bottleneck of finding training data for word sense disambiguation (WSD) in the domain of web queries, where a complete set of ambiguous word senses are unknown. In this paper, we present a combination of active learning and semi-supervised learning method to treat the case when positive examples, which have an expected word sense in web search result, are only given. The novelty of our approach is to use \"pseudo negative examples\" with reliable confidence score estimated by a classifier trained with positive and unlabeled examples. We show experimentally that our proposed method achieves close enough WSD accuracy to the method with the manually prepared negative examples in several Japanese Web search data.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1667583.1667604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes to solve the bottleneck of finding training data for word sense disambiguation (WSD) in the domain of web queries, where a complete set of ambiguous word senses are unknown. In this paper, we present a combination of active learning and semi-supervised learning method to treat the case when positive examples, which have an expected word sense in web search result, are only given. The novelty of our approach is to use "pseudo negative examples" with reliable confidence score estimated by a classifier trained with positive and unlabeled examples. We show experimentally that our proposed method achieves close enough WSD accuracy to the method with the manually prepared negative examples in several Japanese Web search data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动学习与半监督学习相结合的词义消歧:基于日语网络搜索查询的实证研究
本文提出了一种解决web查询领域中语义消歧(WSD)训练数据查找瓶颈的方法。在本文中,我们提出了一种主动学习和半监督学习相结合的方法来处理在网络搜索结果中只给出具有预期词义的正例的情况。我们的方法的新颖之处在于使用具有可靠置信度评分的“伪负示例”,该置信度评分由用正示例和未标记示例训练的分类器估计。实验结果表明,本文提出的方法在若干日语网页搜索数据中获得了与该方法足够接近的WSD精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance How-to Guides for Specific Audiences: A Corpus and Initial Findings Substitution-based Semantic Change Detection using Contextual Embeddings MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1