KNN FOR CLASSIFICATION OF FRUIT TYPES BASED ON FRUIT FEATURES

Mohammed Azman, Nur Nafi’iyah
{"title":"KNN FOR CLASSIFICATION OF FRUIT TYPES BASED ON FRUIT FEATURES","authors":"Mohammed Azman, Nur Nafi’iyah","doi":"10.20527/jtiulm.v7i1.100","DOIUrl":null,"url":null,"abstract":"Research related to the recognition of fruit types has been done previously. Research related to the recognition of many types of fruit applies computer vision and artificial intelligence. The purpose of this research is to apply artificial intelligence science with the KNN method to identify the type of fruit. The KNN method has a good performance in previous studies. We tried to use KNN by determining the most optimal K value. There are five types of fruit images used in this study, namely Apples, Grapes, Oranges, Mangoes, and Strawberries. The fruit image is extracted with colour, texture, and shape features with a total of 15 features, namely the average value of R, the average value of G, the average value of B, the value of skewness R, the value of skewness G, the value of skewness B, the value of grayscale entropy. , grayscale contrast value, grayscale energy value, grayscale correlation value, grayscale homogeneity value, binary area value, binary circumference value, binary major axis value, and binary minor axis value. The dataset used in this study was taken from Kaggle, with a dataset of 2750 images, each type of fruit contained 550 images, 2500 training images were used and 250 images were used for testing. The experimental results show that the KNN method with K=1 has the highest accuracy, which is 99.6%. The KNN method can be used optimally in classifying fruit types based on colour, texture, and shape features.","PeriodicalId":330464,"journal":{"name":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20527/jtiulm.v7i1.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research related to the recognition of fruit types has been done previously. Research related to the recognition of many types of fruit applies computer vision and artificial intelligence. The purpose of this research is to apply artificial intelligence science with the KNN method to identify the type of fruit. The KNN method has a good performance in previous studies. We tried to use KNN by determining the most optimal K value. There are five types of fruit images used in this study, namely Apples, Grapes, Oranges, Mangoes, and Strawberries. The fruit image is extracted with colour, texture, and shape features with a total of 15 features, namely the average value of R, the average value of G, the average value of B, the value of skewness R, the value of skewness G, the value of skewness B, the value of grayscale entropy. , grayscale contrast value, grayscale energy value, grayscale correlation value, grayscale homogeneity value, binary area value, binary circumference value, binary major axis value, and binary minor axis value. The dataset used in this study was taken from Kaggle, with a dataset of 2750 images, each type of fruit contained 550 images, 2500 training images were used and 250 images were used for testing. The experimental results show that the KNN method with K=1 has the highest accuracy, which is 99.6%. The KNN method can be used optimally in classifying fruit types based on colour, texture, and shape features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于水果特征的KNN分类方法
与水果类型识别相关的研究此前已经完成。与识别多种水果相关的研究应用了计算机视觉和人工智能。本研究的目的是应用人工智能科学和KNN方法来识别水果的类型。在以往的研究中,KNN方法具有良好的性能。我们试图通过确定最优K值来使用KNN。在这项研究中有五种类型的水果图像,即苹果,葡萄,橙子,芒果和草莓。提取水果图像的颜色、纹理、形状特征,共15个特征,分别为R均值、G均值、B均值、偏度R值、偏度G值、偏度B值、灰度熵值。、灰度对比度值、灰度能量值、灰度关联值、灰度均匀性值、二值面积值、二值周长值、二值长轴值、二值短轴值。本研究使用的数据集来自Kaggle,数据集为2750张图像,每种水果包含550张图像,其中2500张用于训练图像,250张用于测试。实验结果表明,K=1的KNN方法准确率最高,达到99.6%。KNN方法可以最优地用于基于颜色、纹理和形状特征的水果类型分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WEBSITE DESIGN INFORMATION SYSTEM OF RECORDING OFFENS AND PUNISHMENT STUDENTS SMK MUHAMMADIYAH 8 SILIRAGUNG USE WATERFALL DEVELOPMENT METHOD IDENTIFYING AND FIXING UX-FRICTION EMPLOYEE DEVELOPMENT WEBSITE WITH MIXED APPROACH HEART FRAMEWORK AND USABILITY TESTING GEOLOGY AND THE STUDY OF HEAVY METAL IMPACTS ON ENVIRONMENTAL QUALITY ASSESSMENT USING ARCGIS FOR INTERPRETATION DISTRIBUTION CLASSIFICATION OF STUDENT STUDY PERIOD USING NEURAL NETWORK BACKPROPAGATION ALGORITHM BASED ON ENTRY PATH (CASE STUDY: FACULTY OF ENGINEERING, UNIVERSITAS LAMBUNG MANGKURAT) OPTIMIZATION OF CNN + MOBILENETV3 FOR INSECT IDENTIFICATION: TOWARD HIGH ACCURACY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1